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Decision Trees

e Start with discrete features, then discuss
continuous



Representation

* What does a decision tree represent



Decision Tree for Tax Fraud Detection
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Prediction

* Given a decision tree, how do we assign label to a
test point
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So far...

 What does a decision tree represent

* Given a decision tree, how do we assign label
to a test point

Discriminative or Generative?

Now ...

* How do we learn a decision tree from training
data



How to learn a decision tree
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* Top-down induction [ID3]
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Which feature is best?
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Which feature is best?
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Pick the attribute/feature which yields maximum information gain:
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Andrew Moore’s Entropy in a Nutshell
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Entropy

* Entropy of a random variable Y

Z P(Y =y)log, P(Y = y)
‘
More uncertainty, o7 —s Uniform
more entropy! Max entropy

Y ~ Bernoulli(p)
WM = = Pl p - 6o bovw

Deterministic
Zero entropy
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Information Theory interpretation: H(Y) is the expected number of bits

needed to encode a randomly drawn value of Y (under most efficient code)
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Information Gain

* Advantage of attribute = decrease in uncertainty
— Entropy of Y before split

Z P(Y =y)log, P(Y =y) &

— Entropy of Y after splitting based on X
* Weight by probability of following each branch

[ POV =)

Y = . — ) =« Ex
H(Y | X;) ;P(Xz YHY | X; =) X

= - P(X;=x)Y PY=y|X;=2)loga P(Y =y | X; = z)
x )

argwer (Y%
_ '5“"‘ HK\MX\)

* Information gain is difference
I(Y,X;)) =H(Y)-H{Y | X;) -~
S —

Max Information gain = min conditional entropy
18



Which feature is best to split?

Pick the attribute/feature which yields maximum information gain:

argmax I(Y, X;) = argmax[H(Y) — H(Y|X;)]

= arg min H (Y| X;)

Entropy of Y H(Y) =— Z P(Y =y)log, P(Y =vy)
Yy

Conditional entropy of Y H(Y | X;) = Y P(X;=2)H(Y|X;=2)
- —l

Feature which yields maximum reduction in entropy (uncertainty)
provides maximum information about Y




Information Gain
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Information Gain
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How to learn a decision tree

* Top-down induction [ID3]

Main loop:

Refund
Yes No

1. X+ the|“best”|decision feature for next node

2. Assign X as decision feature for node 50 —

3. For each value of X, create new descendant of Single/ arried
node (Discrete features)

TaxInc NO

4. Sort training examples to leaf nodes Low / \High
NO

5. If training examples perfectly classified, Then
STOP, Else iterate over new leaf nodes
(steps 1-5) after removing current feature

YES

6. When all features exhausted, assign majority label to the leaf node
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How to learn a decision tree

* Top-down induction [ID3, C4.5, C5, ...]

Main loop: C4'5/-/ moe inf gata = i cond ™ eabapy YIX:

1. X+ the decision feature for next node Yes

Refund

No
2. Assign X as decision feature for node 55 et
3. For - split of X, create new descendants of Single, Dyégged arried
node @ TaxInc NO
4. Sort training examples to leaf nodes <80K/ \> 80K
5. If training examples perfectly classified, Then NO YES

STOP, Else iterate over new leaf nodes -@

7. Assign majority label to the leaf node <¥
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Handling continuous features (C4.5)

Convert continuous features into discrete by setting a threshold.

What threshold to pick? ?HI\?

(> P >
Search for best one as per information gain. Infinitely many??

Don’t need to search over more than ~ n (hnumber of training
data),e.g. say X, takes values x;(1), x,2), ..., x,{" in the training set.
Then possible thresholds are -

[X: P+ x,2]/2, [x, 2+ x,3]/2, ..., [x, "V + x,M]/2

w Cumuy® —
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Dyadic decision trees
(split on mid-points of features)

\

J feature|2

1
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Decision Tree more generally...

X7 2 0.5, X5 ={a,b}lor{c,d}

Features can be discrete,
continuous or categorical

Each internal node: test
some set of features {X}

Each branch from a node:
selects a set of value for

{Xi}
Each leaf node:
prediction for Y
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Expressiveness of Decision Trees

Decision trees in general (without pruning) can express any
function of the input features.

 E.g., for Boolean functions, truth table row - path to leaf:

A B AxorB L
—>F F F
= B
. F F
F

4

There is a decision tree which perfectly classifies a training set
with one path to leaf for each example - overfitting

But it won't generalize well to new examples - prefer to find

more compact decision trees
27



When to Stop?

 Many strategies for picking simpler trees:
— Pre-pruning
* Fixed depth (e.g. ID3)
* Fixed number of leaves

— Post-pruning
~ * Chi-square test
— Convert decision tree to a set of rules

— Eliminate variable values in rules which are independent of
label (using chi-square test for independence)

— Simplify rule set by eliminating unnecessary rules

— Information Criteria: MDL(Minimum Description Length)

28



Information Criteria

* Penalize complex models by introducing cost

f = arg min {ii loss(fr(X;),Y;) + pen(T)}
- =1 ' J \ '

log likelihood cost

(fr(X;) — Y;)? regression «
classification «

loss(fr(X;),Y;)

L (xo2y,

- pen(T) o |T| penalize trees with more leaves

CART — optimization can be solved by dynamic programmin
AR —0p y ay prog 298



Example of 2-feature decision tree
classifier
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How to assign label to each leaf

Classification — Majority vote Regression — ?
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How to assign label to each leaf

Classification — Majority vote Regression — Constant/
Linear/Poly fit
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Regression trees

x (1) x® v

Gender | Rich? | Num. # travel | Age
Children | per yr.

F No 2 5 38

M No 0 2 25

M Yes 1 0 72

Num Children?

2 2 <2

Gender?

Female Male

Predicted age=39 Predicted age=36

Average (fit a constant ) using
training data at the leaves
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What you should know

Decision trees are one of the most popular data mining tools
e Simplicity of design

o InterEretabiIitx

e Ease of implementation n fots dim = fue fesluveo
e Good performance in practice (for small dimensions)
Information gain to select attributes (ID3, C4.5,...)

Decision trees will overfit!!!

— Must use tricks to find “simple trees”, e.g.,
* Pre-Pruning: Fixed depth/Fixed number of leaves ~

* Post-Pruning: Chi-square test of independence - ‘
» Complexity Penalized/MDL model selection = In"‘mmﬁ'bﬁ\'\ C’”\'w"*

-

Can be used for classification, regression and density
estimation too
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