### **Decision Trees**

Aarti Singh

Machine Learning 10-315 Nov 4 , 2020



# **Decision Trees**

• Start with discrete features, then discuss continuous

## Representation

• What does a decision tree represent





- Each internal node: test one feature X<sub>i</sub>
- Each branch from a node: selects some value for X<sub>i</sub>
- Each leaf node: prediction for Y

# Prediction

• Given a decision tree, how do we assign label to a test point















So far...

- What does a decision tree represent
- Given a decision tree, how do we assign label to a test point

Discriminative or Generative?

#### **Now** ...

How do we learn a decision tree from training data



So Na

- STOP, Else iterate over new leaf nodes (steps 1-5) after removing current feature
- 6. When all features exhausted, assign majority label to the leaf node

# Which feature is best?





Good split if we are more certain about classification after split – Uniform distribution of labels is bad

## Which feature is best?



Pick the attribute/feature which yields maximum information gain: **nutual**  $\arg \max_{i} I(Y, X_{i}) = \arg \max_{i} [H(Y) - H(Y|X_{i})]$ H(Y) - entropy of Y H(Y|X\_{i}) - conditional entropy of Y Y  $\in \{0_{1}\} \subseteq \{T, F\}$ 

#### **Andrew Moore's Entropy in a Nutshell**





#### Low Entropy

..the values (locations of soup) sampled entirely from within the soup bowl

High Entropy

..the values (locations of soup) unpredictable... almost uniformly sampled throughout our dining room

# Entropy

• Entropy of a random variable Y



**Information Theory interpretation**: H(Y) is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code)

# **Information Gain**

- Advantage of attribute = decrease in uncertainty
  - Entropy of Y before split

$$H(Y) = -\sum_{y} P(Y = y) \log_2 P(Y = y) \Leftarrow$$

- Entropy of Y after splitting based on  $X_i$ 
  - Weight by probability of following each branch

$$H(Y | X_i) = \sum_{x} P(X_i = x) H(Y | X_i = x) = E_{X_i} \left[ \mathcal{Y}(Y | X_i = x) \right]$$
  
=  $-\sum_{x} P(X_i = x) \sum_{y} P(Y = y | X_i = x) \log_2 P(Y = y | X_i = x)$ 

on gain is difference  $I(Y, X_i) = H(Y) - H(Y | X_i) = \arg\max - H(Y | X_i)$   $formation gain = \min \text{ conditional entropy} = \arg\min (Y | X_i)$ Information gain is difference Max Information gain = min conditional entropy

**~ ~** 

# Which feature is best to split?

Pick the attribute/feature which yields maximum information gain:

$$\arg \max_{i} I(Y, X_{i}) = \arg \max_{i} [H(Y) - H(Y|X_{i})]$$
$$= \arg \min_{i} H(Y|X_{i})$$
Entropy of Y
$$H(Y) = -\sum_{y} P(Y = y) \log_{2} P(Y = y)$$
onal entropy of Y
$$\frac{H(Y|X_{i})}{2} = \sum_{x} P(X_{i} = x) H(Y|X_{i} = x)$$

Feature which yields maximum reduction in entropy (uncertainty) provides maximum information about Y

Conditi

#### **Information Gain**

 $H(Y \mid X_i) = -\sum_{x} P(X_i = x) \sum_{y} P(Y = y \mid X_i = x) \log_2 P(Y = y \mid X_i = x)$ 





#### **Information Gain**

 $H(Y \mid X_i) = -\sum_{x} P(X_i = x) \sum_{y} P(Y = y \mid X_i = x) \log_2 P(Y = y \mid X_i = x)$ 



# How to learn a decision tree

• Top-down induction [ID3]

Main loop:

- 1.  $X \leftarrow$  the "best" decision feature for next *node*
- 2. Assign X as decision feature for node
- 3. For each value of  $X_i$  create new descendant of node (Discrete features)
- 4. Sort training examples to leaf nodes
- 5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes (steps 1-5) after removing current feature
- 6. When all features exhausted, assign majority label to the leaf node



# How to learn a decision tree

• Top-down induction [ID3, C4.5, C5, ...]



# Handling continuous features (C4.5)

Convert continuous features into discrete by setting a threshold.

What threshold to pick?



Search for best one as per information gain. Infinitely many??

Don't need to search over more than ~ n (number of training data), e.g. say  $X_1$  takes values  $x_1^{(1)}$ ,  $x_1^{(2)}$ , ...,  $x_1^{(n)}$  in the training set. Then possible thresholds are

$$[x_1^{(1)} + x_1^{(2)}]/2, [x_1^{(2)} + x_1^{(3)}]/2, ..., [x_1^{(n-1)} + x_1^{(n)}]/2$$

#### **Dyadic decision trees** (split on mid-points of features)



# **Decision Tree more generally...**





- Features can be discrete, continuous or categorical
- Each internal node: test some set of features {X<sub>i</sub>}
- Each branch from a node: selects a set of value for {X<sub>i</sub>}
- Each leaf node: prediction for Y

# **Expressiveness of Decision Trees**

- Decision trees in general (without pruning) can express any function of the input features.
- E.g., for Boolean functions, truth table row  $\rightarrow$  path to leaf:



- There is a decision tree which perfectly classifies a training set with one path to leaf for each example - overfitting
- But it won't generalize well to new examples prefer to find more compact decision trees

# When to Stop?

- Many strategies for picking simpler trees:
  - Pre-pruning
    - Fixed depth (e.g. ID3)
    - Fixed number of leaves
  - Post-pruning
    - Chi-square test
      - Convert decision tree to a set of rules
      - Eliminate variable values in rules which are independent of label (using chi-square test for independence)
      - Simplify rule set by eliminating unnecessary rules
  - Information Criteria: MDL(Minimum Description Length)

larried

Single, Divorse

# **Information Criteria**

• Penalize complex models by introducing cost

$$\hat{f} = \arg \min_{T} \left\{ \frac{1}{n} \sum_{i=1}^{n} \operatorname{loss}(\hat{f}_{T}(X_{i}), Y_{i}) + \operatorname{pen}(T) \right\}$$

$$\log \text{ likelihood } \operatorname{cost}$$

$$\log(\hat{f}_{T}(X_{i}), Y_{i}) = (\hat{f}_{T}(X_{i}) - Y_{i})^{2} \text{ regression } \operatorname{classification} \operatorname$$

→ pen(T)  $\propto |T|$  penalize trees with more leaves CART – optimization can be solved by dynamic programming

# Example of 2-feature decision tree classifier



cs.uchicago.edu

# How to assign label to each leaf

Classification – Majority vote

Regression – ?



# How to assign label to each leaf



### **Regression trees**





Average (fit a constant ) using training data at the leaves

# What you should know

- Decision trees are one of the most popular data mining tools
  - Simplicity of design
  - Interpretability
  - Ease of implementation in locs dim = few features
  - Good performance in practice (for small dimensions)
- Information gain to select attributes (ID3, C4.5,...)
- Decision trees will overfit!!!
  - Must use tricks to find "simple trees", e.g.,
    - Pre-Pruning: Fixed depth/Fixed number of leaves
    - Post-Pruning: Chi-square test of independence
    - Complexity Penalized/MDL model selection = Information Criteria
- Can be used for classification, regression and density estimation too