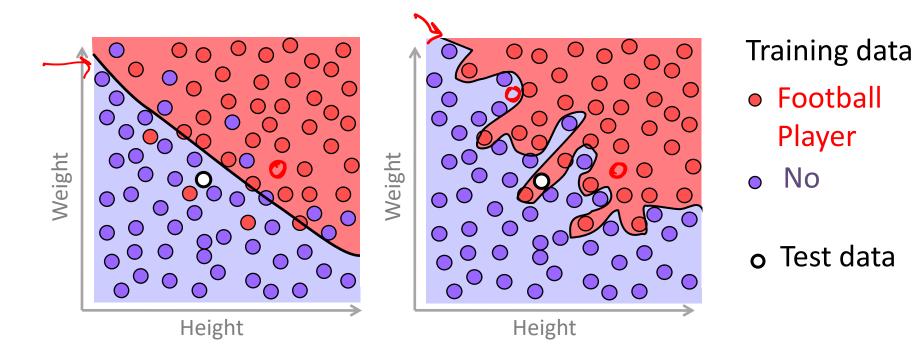
Model selection

Aarti Singh

Machine Learning 10-315 Nov 11, 2020

Judging Test error

Training Data vs. Test Data



- A good machine learning algorithm
 - Does not overfit training data
 - Generalizes well to test data

Training error

• Training error of a classifier f

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{f(X_i) \neq Y_i} \qquad \begin{array}{l} \text{Training Data} \\ \{X_i, Y_i\}_{i=1}^n \end{array}$$

- What about test error? $E[loss(f(x), Y)] = P(f(x) \neq Y)$ Can't compute it.
- How can we know classifier is not overfitting? Hold-out or Cross-validation

Hold-out method

Can judge test error by using an independent sample of data.

Hold - out procedure:

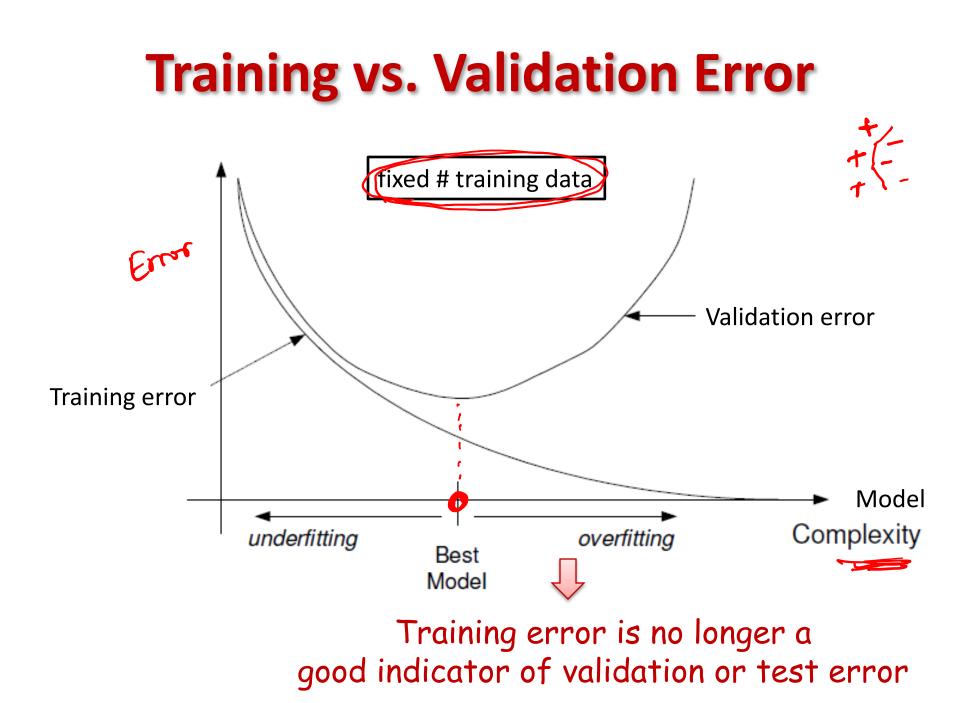
n data points available $D \equiv \{X_i, Y_i\}_{i=1}^n$

1) Randomly split into two sets (preserving label proportion): Training dataset Validation/Hold-out dataset

 $D_T = \{X_i, Y_i\}_{i=1}^m \qquad D_V = \{X_i, Y_i\}_{i=m+1}^n$

often m = n/2

2) Train classifier on D_T . Report error on validation dataset D_V . Overfitting if validation error is much larger than training error



Hold-out method

Drawbacks:

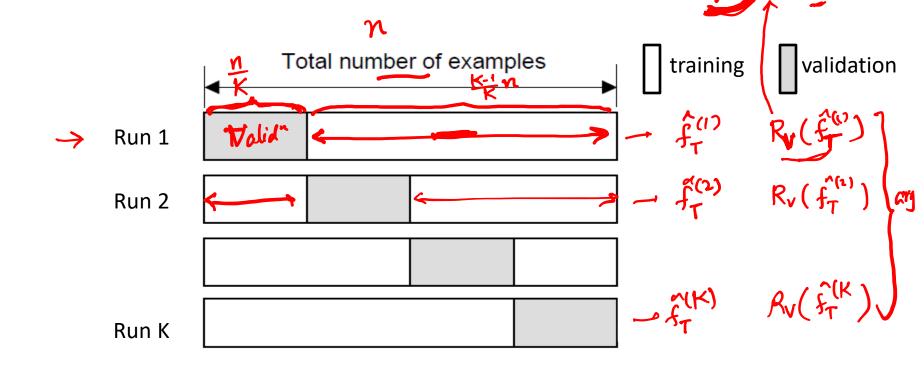
- May not have enough data to afford setting one subset aside for getting a sense of generalization abilities
- Validation error may be misleading (bad estimate of test error) if we get an "unfortunate" split

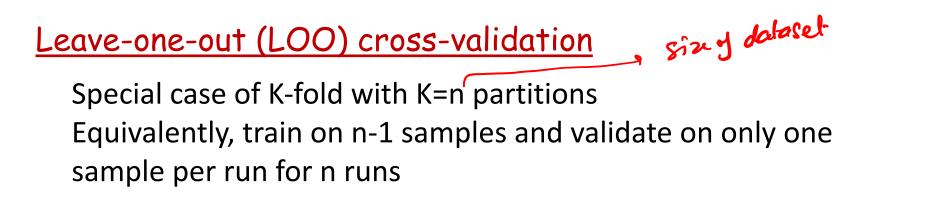
Limitations of hold-out can be overcome by a family of sub-sampling methods at the expense of more computation.

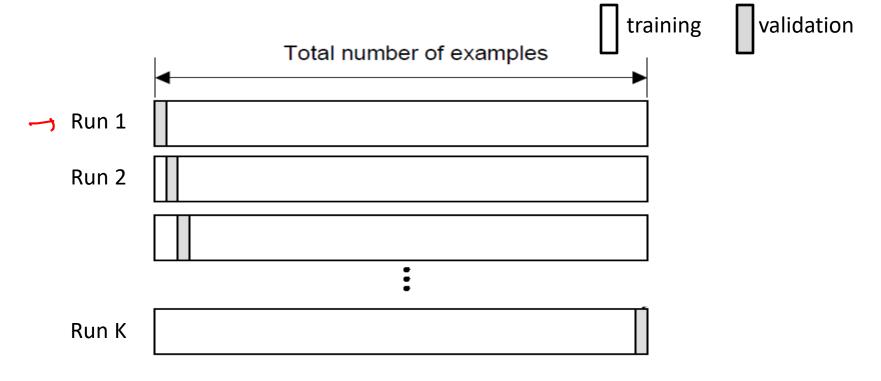
K-fold cross-validation

Create K-fold partition of the dataset.

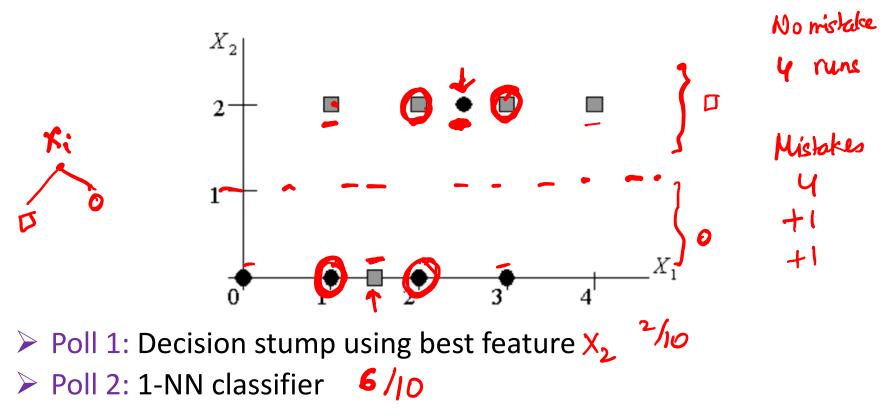
Do K runs: train using K-1 partitions and calculate validation error on remaining partition (rotating validation partition on each run). Report average validation error $\underbrace{1}_{i} \underbrace{\sum}_{j} \underbrace{1}_{i} \underbrace{1$







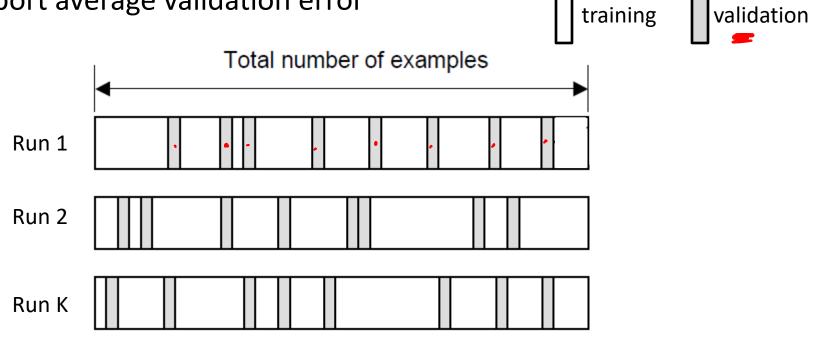
What is the leave-one-out cross-validation error of the given classifiers on the following dataset?



Random subsampling

- Randomly subsample a fixed fraction αn (0< α <1) of the dataset for validation.
- Compute validation error with remaining data as training data.
- Repeat K times

Report average validation error



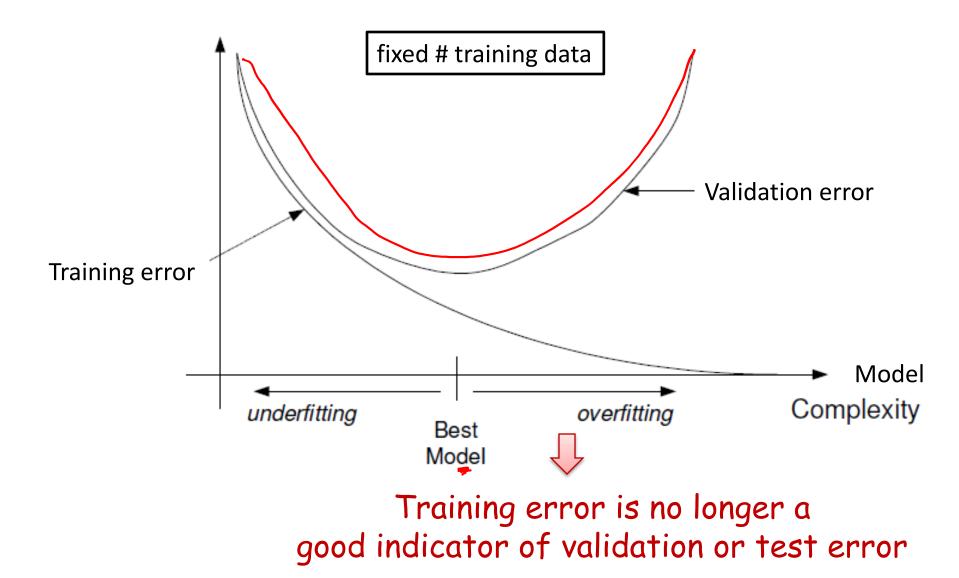
Practical Issues in Cross-validation

How to decide the values for K and a?

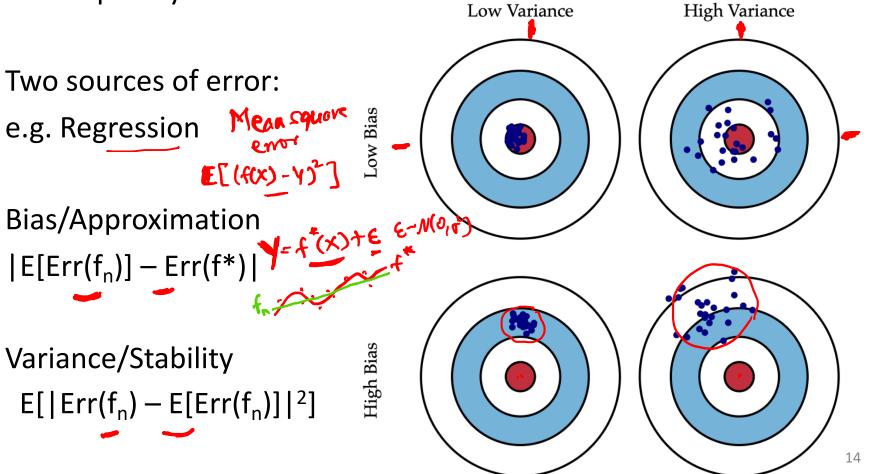
- Large K -> smelles validation set, longer training set
 - → + Validation error can approximate test error well
 - Observed validation error will be unstable (few validation pts)
 - The computational time will be very large as well (several runs)
- Small K => longer validation set, fewer training pts.
 - + The #runs and, therefore, computation time are reduced
 + Observed validation error will be stable (many validation pts)
 Validation error cannot approximate test error well

Common choice: K = 10, α = 0.1 \odot

Training vs. Validation Error

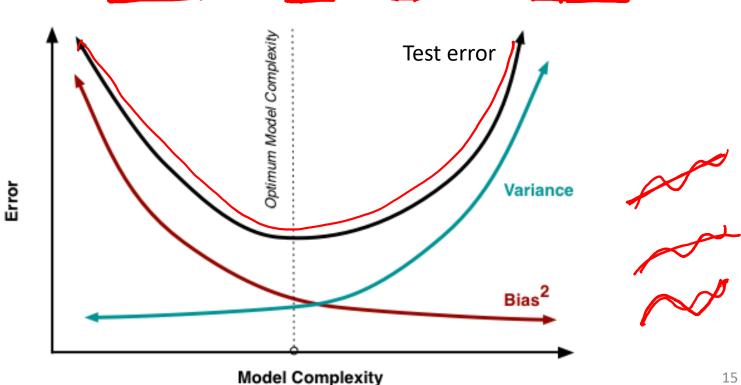


Why does test/validation error go up with increasing model complexity?



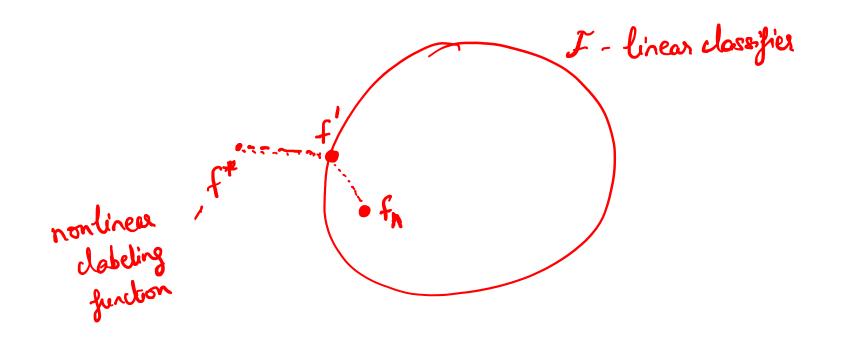
Why does test/validation error go up with increasing model ulletcomplexity?

Regression test error = Variance + Bias² + Irreducible error



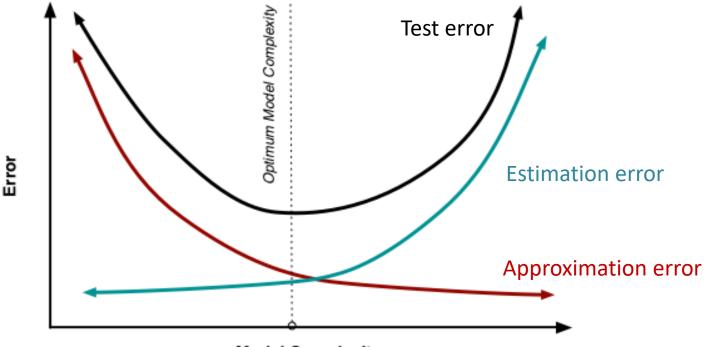
More generally: Let f' - best predictor in class \mathcal{F}

Test error = Estimation error + Approximation error + Irreducible error $Err(f_n) = Err(f_n) - Err(f') + Err(f') - Err(f^*) + Err(f^*)$



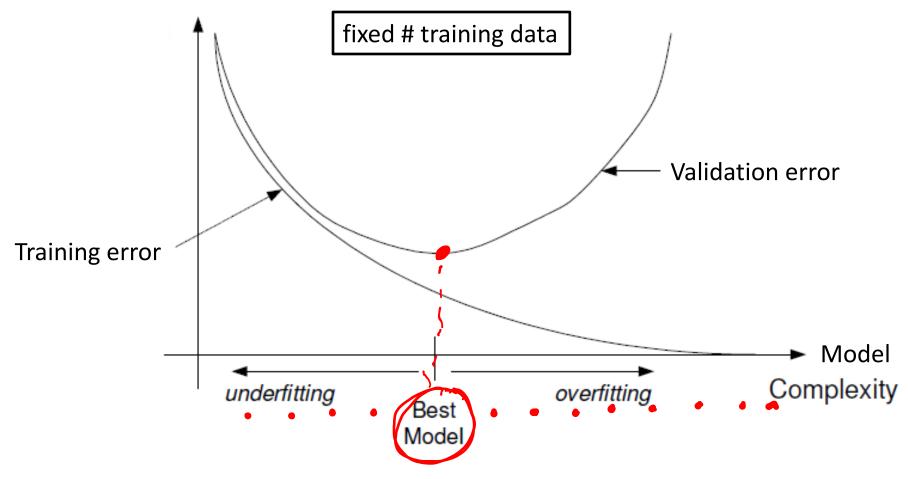
More generally: Let f' – best predictor in class \mathcal{F}

Test error = Estimation error + Approximation error + Irreducible error $Err(f_n) = Err(f_n) - Err(f') + Err(f') - Err(f^*) + Err(f^*)$



Model selection

Effect of Model Complexity



Can we select good models using hold-out or cross-validation?

Examples of Model Spaces

Model Spaces with increasing complexity:

- Nearest-Neighbor classifiers with increasing neighborhood sizes
 k = 1,2,3,...
 Large neighborhood =>
 - Decision Trees with increasing depth k or with k leaves
 Higher depth/ More # leaves => figher complexity
 - Neural Networks with increasing layers or nodes per layer
 More layers/Nodes per layer => *Ligher* complexity
 - MAP estimates with stronger priors (larger hyper-parameters $\beta_{\rm H}$, $\beta_{\rm T}$ for Beta distribution or smaller variance for Gaussian prior)

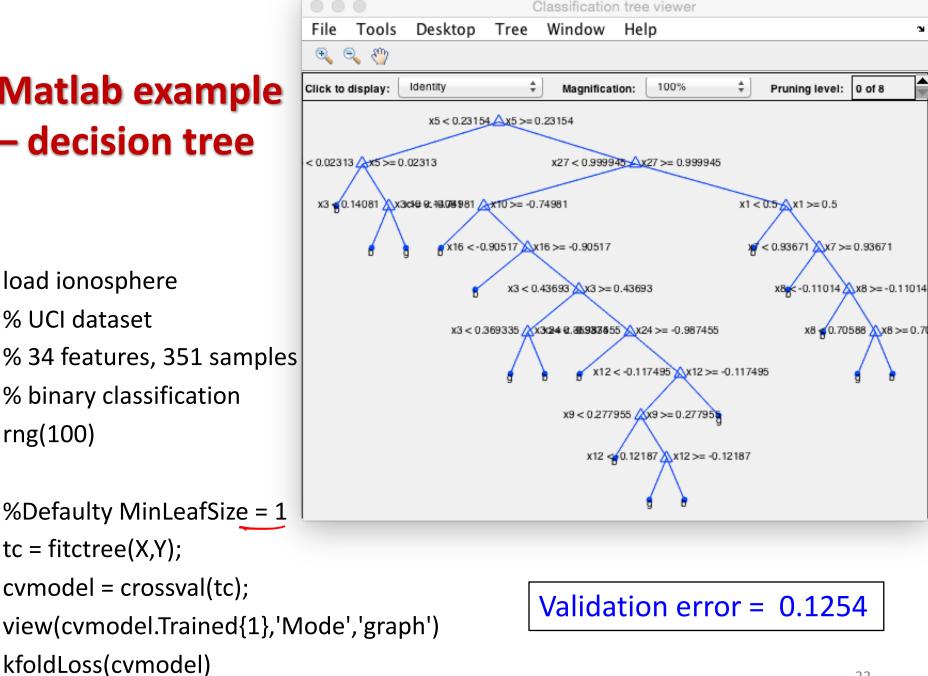
How can we select the right complexity model ?

Model selection using Holdout/Cross-validation

- Train models of different complexities and evaluate their validation error using hold-out or cross-validation
- Pick model with smallest validation error (averaged over different runs for cross-validation)

Matlab example decision tree

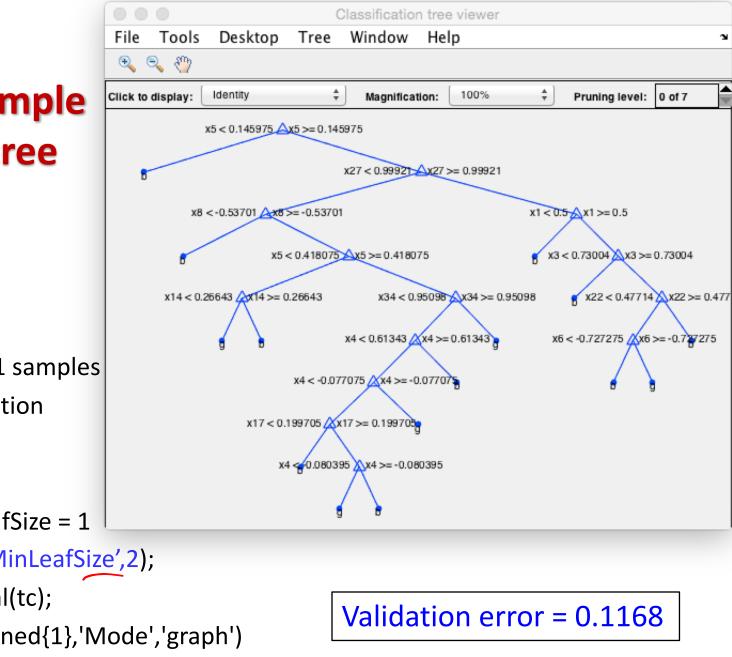
load ionosphere % UCI dataset % 34 features, 351 samples % binary classification rng(100)%Defaulty MinLeafSize = 1 tc = fitctree(X,Y);cvmodel = crossval(tc); view(cvmodel.Trained{1},'Mode','graph')



Matlab example – decision tree

load ionosphere
% UCI dataset
% 34 features, 351 samples
% binary classification
rng(100)

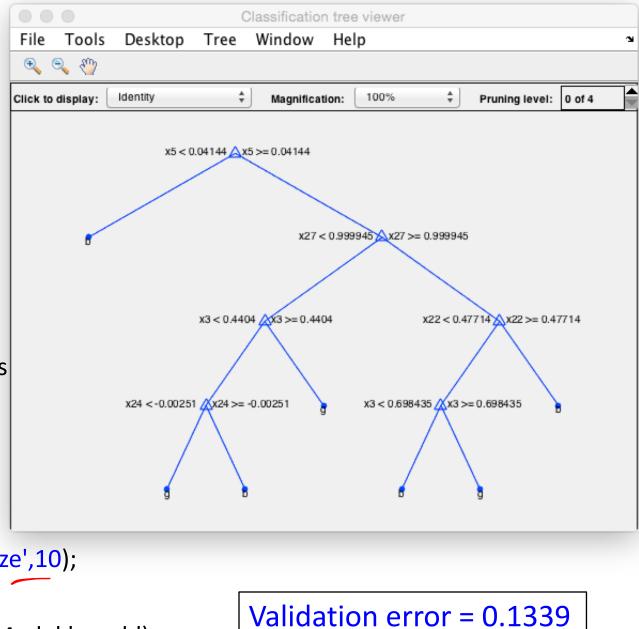
%Defaulty MinLeafSize = 1
tc = fitctree(X,Y, 'MinLeafSize',2);
cvmodel = crossval(tc);
view(cvmodel.Trained{1},'Mode','graph')
kfoldLoss(cvmodel)



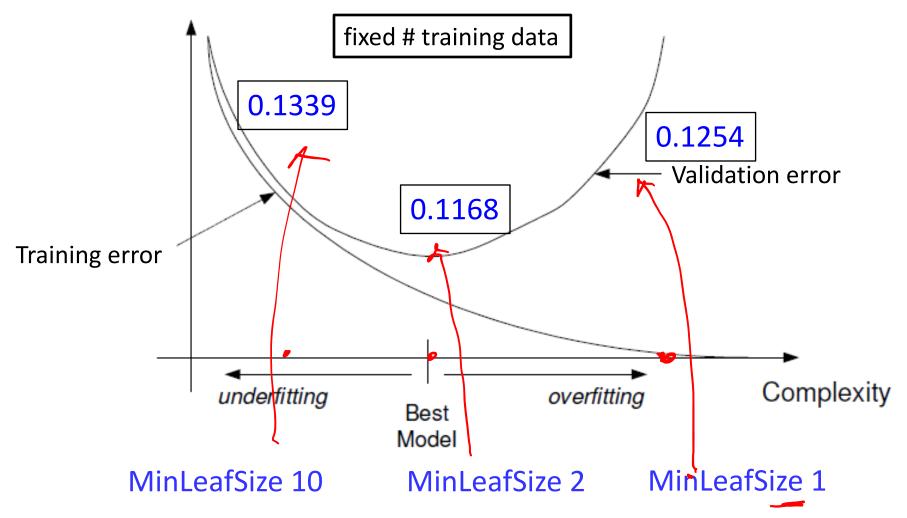
Matlab example – decision tree

load ionosphere
% UCI dataset
% 34 features, 351 samples
% binary classification
rng(100)

%Defaulty MinLeafSize = 1
tc = fitctree(X,Y, 'MinLeafSize',10);
cvmodel = crossval(tc);
view(cvmodel.Trained{1},'Mode','graph')
kfoldLoss(cvmodel)



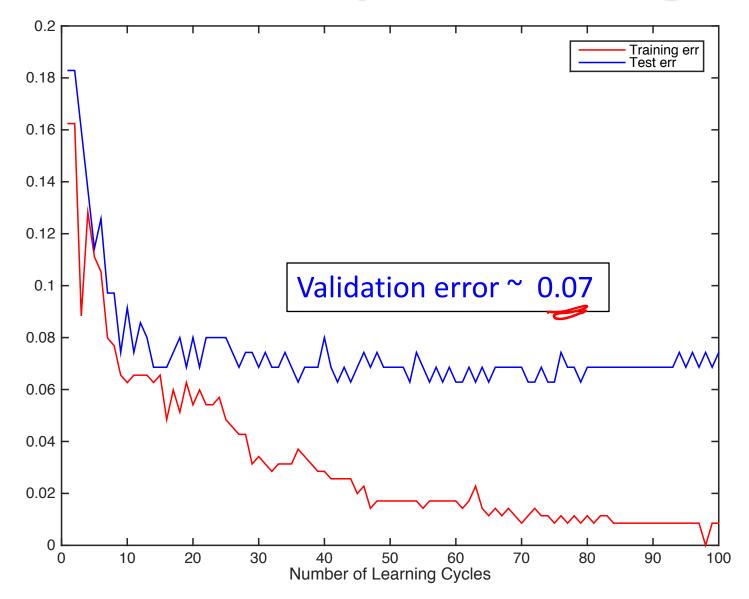
Matlab example – decision trees



Matlab example - boosting

- % UCI dataset
- % 34 features, 351 samples
- % binary classification
- load ionosphere;
- rng(2); % For reproducibility
- ClassTreeEns = fitensemble(X,Y,'AdaBoostM1',100,'Tree');
- rsLoss = resubLoss(ClassTreeEns,'Mode','Cumulative');
- plot(rsLoss,'r');
- hold on
- ClassTreeEns = fitensemble(X,Y,'AdaBoostM1',100,'Tree',...
- 'Holdout',0.5);
- genError = kfoldLoss(ClassTreeEns,'Mode','Cumulative');
- plot(genError,'b');
- xlabel('Number of Learning Cycles');
- legend('Training err', 'Test err')

Matlab example - boosting



What you should know

- Estimating test error using
 - hold-out
 - cross-validation
- Bias-variance tradeoff
- Model selection using
 - hold-out
 - cross-validation