Clustering

Aarti Singh

Machine Learning 10-315 Nov 18, 2020

Some slides courtesy of Eric Xing, Carlos Guestrin

What is clustering?
xi - ith data point?

- Clustering: the process of grouping a set of objects into classes of similar objects
	- rects
high int<mark>ra-</mark>class similarity
	- low inter-class similarity between
	- It is the most common form of unsupervised learning

Clustering is subjective

What is Similarity?

Hard to define! But *we know it when we see it*

• The real meaning of similarity is a philosophical question. We will take a more pragmatic approach - think in terms of a distance (rather than similarity) between vectors or correlations between random variables. $X_i \in \mathbb{R}^d$

Distance metrics

-d dimension

$$
x = (x_1, x_2, ..., x_p)
$$

$$
y = (y_1, y_2, ..., y_p)
$$

Euclidean distance

$$
d(x, y) = \sqrt[2]{\sum_{i=1}^{p} |x_i - y_i|^2}
$$

Manhattan distance

Sup-distance

$$
d(x, y) = \sum_{i=1}^p |x_i - y_i|
$$

$$
d(x, y) = \max_{1 \leq i \leq p} |x_i - y_i|
$$
 4

Correlation coefficient

$$
x = (x_1, x_2, ..., x_p)
$$

$$
y = (y_1, y_2, ..., y_p)
$$

Random vectors (e.g. expression levels of two genes under various drugs)

Pearson correlation coefficient

$$
\rho(x, y) = \frac{\sum_{i=1}^{p} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{p} (x_i - \overline{x})^2 \times \sum_{i=1}^{p} (y_i - \overline{y})^2}}
$$

where
$$
\bar{x} = \frac{1}{p} \sum_{i=1}^{p} x_i
$$
 and $\bar{y} = \frac{1}{p} \sum_{i=1}^{p} y_i$.

Partitioning Algorithms

- Partitioning method: Construct a partition of *n* objects into a set of *K* clusters
- Given: a set of objects and the number *K*
- Find: a partition of *K* clusters that optimizes the chosen partitioning criterion
	- Globally optimal: exhaustively enumerate all partitions
	- Effective heuristic method: K-means algorithm

K-Means

Algorithm

Input – Desired number of clusters, *k*

and date pointe {Xi } i=1

Initialize – the *k* cluster centers (randomly if necessary) $M_{\mathbf{k}}$? Iterate –

- 1. Assign points to the nearest cluster centers
- 2. Re-estimate the *k* cluster centers (aka the centroid or mean), by assuming the memberships found above are correct.

$$
\vec{\mu}_k = \frac{1}{\mathcal{C}_k} \sum_{i \in \mathcal{C}_k} \vec{x}_i
$$

Termination –

If none of the objects changed membership in the last iteration, exit. Otherwise go to 1.

Voronoi diagram

K-means Recap...

• Randomly initialize *k* centers

 \Box $\mu^{(0)} = \mu_1^{(0)}, \dots, \mu_k^{(0)}$

K-means Recap...

• Randomly initialize *k* centers \Box $\mu^{(0)} = \mu_1^{(0)}, \dots, \mu_k^{(0)}$

Iterate $t = 0, 1, 2, ...$

• Classify: Assign each point $j \in \{1,...m\}$ to nearest center:

$$
\Box \quad C^{(t)}(j) \leftarrow \arg \min_{i=1,\dots,k} \|\mu_i^{(t)} - x_j\|_{\mathbf{2}}^2
$$

K-means Recap...

• Randomly initialize *k* centers \Box $\mu^{(0)} = \mu_1^{(0)}, \dots, \mu_k^{(0)}$

Iterate $t = 0, 1, 2, ...$

• Classify: Assign each point $j \in \{1,...m\}$ to nearest center:

$$
\begin{array}{ll}\n\text{Use's inverse, } & \Box \quad C^{(t)}(j) \leftarrow \arg \min \limits_{i=1,\ldots,k} \|\mu_i^{(t)} - x_j\|_2^2 & \text{for } \\ \text{of the prime, } & \text{of the true, } \\ \text{of the number: } & \mu_i \text{ becomes } \text{centroid of its points:} \\ \n\Box \quad \mu_i^{(t+1)} \leftarrow \arg \min \limits_{\mu_i} \sum_{j:C^{(t)}(j)=i} \|\mu - x_j\|_2^2 & \text{if } \\ \n\Box \quad \prod_{i=1}^n \sum_{j:C^{(t)}(j)=i} x_j^{(i)} \text{ is } \\ \n\Box \quad \text{Equivalent to } \\ \n\Box \quad \text{and not } \\ \n\Box \quad \text{and not } \\ \n\end{array}
$$

What is K-means optimizing?

Potential function $f(x, C)$ of centers μ and point allocations C:

$$
\frac{F(\mu, C)}{F(\mu, C)} = \sum_{j=1}^{m} ||\mu_{C(j)} - x_j||^2
$$

$$
= \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_i - x_j||^2
$$

• Optimal K-means: \Box min_µmin_⊆ $F(\mu, C)$

K-means algorithm

- Optimize potential function: min min $F(\mu, C) = \min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_i - x_j||^2$ \leftarrow Non-
- **4 K-means algorithm:** (coordinate descent on F)

(1) Fix μ , optimize C

(2)

Expected cluster assignment **Maximum** likelihood for center

Next class, we will see a generalization of this approach: **EM algorithm**

• Results are quite sensitive to seed selection.

Seed Choice

• Results are quite sensitive to seed selection.

Seed Choice

• Results are quite sensitive to seed selection.

Seed Choice

- Results can vary based on random seed selection.
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clustering.
	- Try out multiple starting points (very important!!!)
	- k-means ++ algorithm of Arthur and Vassilvitskii key idea: choose centers that are far apart

(probability of picking a point as cluster center α distance from nearest center picked so far)

Other Issues

- Number of clusters K
	- Objective function

$$
\sum_{j=1}^{m} ||\mu_{C(j)} - x_j||^2 \quad \bullet
$$

– Look for "Knee" in objective function

 ∞

Other Issues

• Shape of clusters

– Assumes isotropic, equal variance, convex clusters

- Sensitive to Outliers
	- use K-medoids

(One) bad case for K-means

- Clusters may overlap
- Some clusters may be "wider" than others.
- Clusters may not be linearly separable -

(One) bad case for K-means

- Clusters may overlap
- Some clusters may be "wider" than others
- Clusters may not be linearly separable

Partitioning Algorithms

• K-means

– **hard assignment**: each object belongs to only one cluster

• Mixture modeling

– **soft assignment**: probability that an object belongs to a cluster

Generative approach

Gaussian Mixture Model

Mixture of K Gaussian distributions: (Multi-modal distribution)

(One) bad case for K-means

- Clusters may overlap \checkmark
- Some clusters may be "wider" than others
- Clusters may not be linearly separable

General GMM

 \bigstar M_{2}

GMM – Gaussian Mixture Model (Multi-modal distribution)

General GMM

GMM – Gaussian Mixture Model (Multi-modal distribution)

- There are k components
- Component *i* has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean ^µ*i* and covariance matrix Σ_i \rightarrow

Each data point is generated according to the following recipe:

1) Pick a component at random: Choose component i with probability *P(y=i)*

2) Datapoint
$$
x \sim N(\mu_i, \Sigma_i)
$$

(One) bad case for K-means

- Clusters may overlap \vee
- Some clusters may be "wider" than others \vee
- Clusters may not be linearly separable

 \bullet

General GMM

GMM – Gaussian Mixture Model (Multi-modal distribution)

"Quadratic Decision boundary" – second-order terms don't cancel out

Learning General GMM

• How to estimate parameters? Max Likelihood But don't know labels Y (recall Gaussian Bayes classifier)

Learning General GMM

Maximize **marginal** likelihood: argmax $\prod_j P(x_j)$ = argmax $\prod_j \sum_{i=1}^n P(y_j=i, x_j)$ = argmax $\prod_j \sum_{i=1}^N P(y_j=i)p(x_j|y_j=i)$ K K $P(y_j=i) = P(y=i)$ Mixture component i is chosen with prob $P(y=i)$

$$
= \arg \max \prod_{j=1}^{m} \sum_{i=1}^{k} P(y = i) \frac{1}{\sqrt{\det(\sum_{i})}} \exp \left[-\frac{1}{2} (x_j - \mu_i)^T \sum_{i} (x_j - \mu_i) \right]
$$

How do we find the μ_i , Σ_i s and P(y=i)s which give max. marginal likelihood?

- * Set ∂ log Prob (....) = 0 and solve for μ_i 's. Non-linear not-analytically solvable $\partial \mu_i$
- * Use gradient descent: Doable, but often slow

Expectation-Maximization (EM)

A general algorithm to deal with hidden data, but we will study it in the context of unsupervised learning (hidden labels)

- No need to choose step size as in Gradient methods.
- EM is an Iterative algorithm with two linked steps: E-step: fill-in hidden data (Y) using inference M-step: apply standard MLE/MAP method to estimate parameters ${p_i, \mu_i, \Sigma_i\}^k_{i=1}$
- This procedure monotonically improves the marginal likelihood (or leaves it unchanged). Thus it always converges to a local optimum of the likelihood.

EM for spherical, same variance GMMs

E-step

Compute "expected" classes of all datapoints for each class

$$
P(y = i | xj, \mu1... \muk) \propto exp\left(-\frac{1}{2\sigma^{2}} \|x_{j} - \mu_{i}\|^{2}\right) P(y = i)
$$

In K-means "E-step" we do hard assignment

EM does soft assignment

M-step

Compute Max. like **μ** given our data's class membership distributions (weights)

$$
\mu_i = \frac{\sum_{j=1}^m P(y=i|x_j)x_j}{\sum_{j=1}^m P(y=i|x_j)}
$$

Exactly same as MLE with weighted data

Iterate.

EM for general GMMs

M-step

Compute MLEs given our data's class membership distributions (weights)

$$
\mu_i^{(t+1)} = \frac{\sum_j P(y=i|x_j, \lambda_t)x_j}{\sum_j P(y=i|x_j, \lambda_t)} \sum_i^{(t+1)} = \frac{\sum_j P(y=i|x_j, \lambda_t)(x_j - \mu_i^{(t+1)})^T}{\sum_j P(y=i|x_j, \lambda_t)}
$$

$$
p_i^{(t+1)} = \frac{\sum_j P(y=i|x_j, \lambda_t)}{m} \sum_j^{(t+1)} = \frac{\sum_j P(y=i|x_j, \lambda_t)}{m} = \text{#data points}
$$