Expectation-Maximization (EM)

Aarti Singh

Machine Learning 10-315 Nov 23, 2020

Some slides courtesy of Eric Xing, Carlos Guestrin

 $p(x)$ • How to estimate parameters? Max Likelihood But don't know labels Y (recall Gaussian Bayes classifier)

Expectation-Maximization (EM)

A general algorithm to deal with hidden data, but we will study it in the context of unsupervised learning (hidden labels)

- No need to choose step size as in Gradient methods.
- EM is an Iterative algorithm with two linked steps: E-step: fill-in hidden data (Y) using inference M-step: apply standard MLE/MAP method to estimate parameters ${p_i, \mu_i, \Sigma_i\}^k_{i=1}$
- This procedure monotonically improves the marginal likelihood (or leaves it unchanged). Thus it always converges to a local optimum of the likelihood.

EM for spherical, same variance GMMs same mixture proportions \rightarrow Pi = Ply=i)

Initialize: μ_1 , μ_2 , ..., μ_K randomly

E-step

 $\boldsymbol{\mathcal{A}}$

Compute "expected" classes of all datapoints for each class

$$
\mathbf{P}(\mathbf{y} = \mathbf{i} | \mathbf{x}_{j}, \mu_{1}...\mu_{k}) \propto \exp\left(-\frac{1}{2\sigma^{2}}\|\mathbf{x}_{j} - \mu_{i}\|^{2}\right) \mathbf{P}(\mathbf{y} = \mathbf{i})
$$

In K-means "E-step" we do hard assignment

EM does soft assignment

 $\Sigma_i = \frac{2}{\kappa} \sum_{k} \frac{\sum_{i=1}^{N} \sum_{i=1}^{K} \sum_{i=1}^{K} \sum_{j=1}^{K} \sum_{j=1}^{K}$

EM for spherical, same variance GMMs same mixture proportions

Initialize: μ_1 , μ_2 , ..., μ_K randomly

E-step

Compute "expected" classes of all datapoints for each class

$$
P(y = i | xj, \mu1... \muk) \propto exp\left(-\frac{1}{2\sigma^2} ||x_j - \mu_i||^2\right) P(y = i)
$$

In K-means "E-step" we do hard assignment

EM does soft assignment

M-step

$$
\mu_{\text{max}} = \mu_{\text{K}}
$$

Compute Max. like **μ** given our data's class membership distributions (weights)

$$
\mu_i = \frac{\sum_{j=1}^m P(y=i|x_j)x_j}{\sum_{j=1}^m P(y=i|x_j)}
$$

Iterate.

 $\frac{1}{m}$ $\sum_{i=1}^{m}$ x_i $\frac{1}{2}$ x_i \in C_i \leftarrow K means

Exactly same as MLE with weighted data

EM for general GMMs

M-step

Compute MLEs given our data's class membership distributions (weights)

$$
\mu_{i}^{(t+1)} = \frac{\sum_{j} P(y = i | x_{j}, \lambda_{t}) x_{j}}{\sum_{j} P(y = i | x_{j}, \lambda_{t})} \qquad \sum_{i}^{(t+1)} = \frac{\sum_{j} P(y = i | x_{j}, \lambda_{t}) (x_{j} - \mu_{i}^{(t+1)}) x_{j} - \mu_{i}^{(t+1)} \}}{\sum_{j} P(y = i | x_{j}, \lambda_{t})} \qquad \sum_{j}^{(t+1)} \frac{\sum_{j} P(y = i | x_{j}, \lambda_{t})}{\sum_{j} P(y = i | x_{j}, \lambda_{t})} \qquad \sum_{j}^{(t+1)} \frac{\sum_{j} P(y = i | x_{j}, \lambda_{t})}{\sum_{j} P(y = i | x_{j}, \lambda_{t})} \equiv \frac{\sum_{j} P(y = i | x_{j}, \lambda_{t})}{m}
$$

EM for general GMMs: Example $\sum_{\mathbf{2}}\Bigg/ \qquad \qquad \Bigg/ \sum_{\mathbf{3}}$ $R = 3$

(1) Random initialization
 $\mu_1, \mu_2, \mu_3 = \frac{1}{3}$
 $\Sigma_1, \Sigma_2, \Sigma_3$ $\mu_{20.333}^2$ μ_{1} Σ_1 $\left\{\n\begin{array}{ccc}\n & \mu_{1/p=0.333} & \mu_{3} \\
 & \mu_{4/p=0.333} & \mu_{3} \\
 & \mu_{5/p=0.333} & \mu_{6} \\
 & \mu_{7-p=0.333} & \mu_{8} \\
 & \mu_{8-p=0.333} & \mu_{8} \\
 & \mu_{9-p=0.333} & \mu_{10} \\
 & \mu_{11/p=0.333} & \mu_{11} \\
 & \mu_{12/p=0.333} & \mu_{12} \\
 & \mu_{13/p=0.333} & \mu_{13} \\
 & \mu_{14/p=0.333$ 1 E. step $P(y = \bullet | x_{j}, \mu_{1}, \mu_{2}, \mu_{3}, \Sigma_{1}, \Sigma_{2}, \Sigma_{3}, p_{1}, p_{2}, p_{3})$ $p_3 \leftarrow \frac{\sum_{i=1}^{m} p(y_i - |x_i|)}{m}$
 $\mu_3 \leftarrow \frac{\sum_{i=1}^{m} p(y_i - |x_i|) x_i}{m}$ $M-5$ $\frac{1}{2} \frac{1}{2} \frac{$

After 1st iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

GMM clustering of assay data

 $p(x)$ K choice $\frac{0}{6}$

General GMM

GMM – Gaussian Mixture Model (Multi-modal distribution)

Resulting Density Estimator

Resulting Bayes Classifier

Summary: EM Algorithm

- A way of maximizing likelihood function for hidden variable models. Finds MLE of parameters when the original (hard) problem can be broken up into two (easy) pieces:
	- 1. Estimate some "missing" or "unobserved" data from observed data and current parameters.
	- 2. Using this "complete" data, find the maximum likelihood parameter estimates.
- Alternate between filling in the latent variables using the best guess (posterior) and updating the parameters based on this guess:
	- 1. E-step: soft cluster assignment for each data point
	- 2. M-step: update parameters of each mixture component
- EM can get stuck in local minima. though gueranteed to converge.
- BUT Extremely popular in practice.

Clustering Algorithms

- Partition algorithms
	- K means clustering V
	- Mixture-Model based clustering

- Hierarchical algorithms
	- Single-linkage $\overline{}$
	- Average-linkage <
	- Complete-linkage <
	- Centroid-based

Hierarchical Clustering

• Bottom-Up Agglomerative Clustering

Starts with each object in a separate cluster, and repeat:

- Joins the most similar pair of clusters,
- Update the similarity of the new cluster to others until there is only one cluster.

Greedy – less accurate but simple to implement

• Top-Down divisive

Starts with all the data in a single cluster, and repeat:

– Split each cluster into two using a partition algorithm Until each object is a separate cluster.

More accurate but complex to implement

Different algorithms differ in how the similarities are defined (and hence updated) between two clusters

- Single-Linkage
	- Nearest Neighbor: similarity between their closest members.
- Complete-Linkage
	- Furthest Neighbor: similarity between their furthest members.
- **Centroid**
	- Similarity between the centers of gravity
- Average-Linkage
	- Average similarity of all cross-cluster pairs.

Single-Linkage Method

Euclidean Distance

Distance Matrix

c

b a

Complete-Linkage Method

Euclidean Distance

Distance Matrix

Dendrograms

Another Example

Complete Link Example

Single vs. Complete Linkage

Shape of clusters

Single-linkage allows anisotropic and non-convex shapes

Complete-linkage assumes isotopic, convex shapes

Computational Complexity

bottom-up (lindbge)

- All hierarchical clustering methods need to compute similarity of all pairs of *n* individual instances which is O(n2).
- At each iteration,

time.

- Sort similarities to find largest one $O(n^2 \log n)$.
- Update similarity between merged cluster and other clusters. Computing similarity to each other cluster can be done in constant

So we get $O(n^2 \log n)$ or $O(n^3)$ (if naïvely implemented)

Computational Complexity (K-means)

- At each iteration,
	- Computing distance between each of the n objects and the K cluster centers is O(*Kn*).
	- Computing cluster centers: Each object gets added once to some cluster: O(*n*).
- Assume these two steps are each done once for *l* iterations: O(*lKn*).

What you need to know…

- Partition based clustering algorithms
	- K-means
		- Coordinate descent
		- Seeding
		- Choosing K
	- Mixture models EM algorithm
- Hierarchical clustering algorithms

 \mathbf{r}

 \mathbf{r}

 $\sim 10^{11}$

- Single-linkage
- Complete-linkage
- Centroid-linkage
- Average-linkage

Unsupervised Learning

"Learning from unlabeled/unannotated data" (without supervision)

What can we predict from unlabeled data?

o Density estimation

Unsupervised Learning

"Learning from unlabeled/unannotated data" (without supervision)

What can we predict from unlabeled data?

- o Density estimation
- \circ Groups or clusters in the data

Unsupervised Learning

"Learning from unlabeled/unannotated data" (without supervision)

What can we predict from unlabeled data?

- \circ Density estimation \sim
- \circ Groups or clusters in the data \sim
- \circ Dimensionality reduction \sim

