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Mixture models (Gaussian)
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Gaussian mixture model

p(z|Y = 1) ~ N(us, 35)

Parameters: {p,,; s s, Zi }fi

Morgmal «)
e How to estimate parameters? Max Likelihood P
But don’t know labels Y (recall Gaussian Bayes classifier)




Expectation-Maximization (EM)

A general algorithm to deal with hidden data, but we will study it in
the context of unsupervised learning (hidden labels)

* No need to choose step size as in Gradient methods. &~

* EMis an lterative algorithm with two linked steps:
E-step: fill-in hidden data (Y) using inference
M-step: apply standard MLE/MAP method to estimate parameters

{pi, Wi, zi}ki=1

* This procedure monotonically improves the marginal
likelihood (or leaves it unchanged). Thus it always converges

to a local optimum of the likelihood. /\/\/\



EM for spherical, same varlance GMMs
same mixture proportlons Z:

e =PIy
- Initialize: u,, w,, ..., ug randomly
E-step
Compute “expected” classes of all datapoints for each class
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we do hard assignment

In K-means "E-step”
P(yzi‘xj,ul...uk)oc exp(—Zl2 o sz i)

EM does soft assignment
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EM for spherical, same variance GMMs
same mixture proportions

Initialize: u,, w,, ..., ug randomly

E-step
Compute “expected” classes of all datapoints for each class

In K-means "E-step”

: 2jP(y =i)) we do hard assignment

267

P(y:i‘xj,ul...uk)oc exp(— ij — U,
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EM does soft assignment

M-step /’}i‘"/uk
Compute Makx. like p given our data’s class membership distributions (weights)
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EM for general GMMs

Iterate. On iteration t let our estimates be pt is shorthand for
Ae={ g, ppl¥ . Y 2;(” Zé(t) 2;<(t), p1, po¥ ... pl } estimate of Pfy=i) on
— ’ S t'th iteration
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E-step

Compute “expected” classes of all datapoints for each class
Just evaluate a

_, P( _l‘x], t)ocpl p( :ui(t)aZi(t)) Gaussian at x;
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M-step ‘1 ‘)
Compute MLEs given our data’s class membership distributions (weights)
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EM for general GMMs: Example
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After 15t iteration




After 2" jteration




After 3" jteration




After 4" jteration




After 5" jteration




After 6" iteration




After 20" iteration
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GMM clustering of assay data




General GMM

GMM — Gaussian Mixture Model (Multi-modal distribution)

p(x) = IZ p(x[y=i) P(y=i)
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Mixture Mixture
component proportion

p(x[y=i) ~ N1, )




Resulting
Density
Estimator
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Resulting
Bayes
Classifier




Summary: EM Algorithm

A way of maximizing likelihood function for hidden variable models. Finds

MVLE of parameters when the original (hard) problem can be broken up
into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current
parameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

Alternate between filling in the latent variables using the best guess
(posterior) and updating the parameters based on this guess:

1. E-step: soft cluster assignment for each data point
2. M-step: update parameters of each mixture component

EM can get stuck in local minima. W ﬁuAfM\'&d &’ w"l\ﬂ‘-ﬁb-

BUT Extremely popular in practice.



Clustering Algorithms

e Partition algorithms
* K means clustering v

* Mixture-Model based clustering ¥

* Hierarchical algorithms

e Single-linkage ~

* Average-linkage -

 Complete-linkage “
 Centroid-based -~
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Hierarchical Clustering

* Bottom-Up Agglomerative Clustering

Starts with each object in a separate cluster, and repeat:
vith €ach 1N 4d

— Joins the most similar pair of clusters,

— Update the similarity of the new cluster to others ‘”cﬂ g
until there is only one cluster.
Greedy - less accurate but simple to implement

* Top-Down divisive o0
Starts with all the data in a single cluster, and repeat: "
— Split each cluster into two using a partition algorithm L= P g

Until each object is a separate cluster.
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More accurate but complex to implement l__l i
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Bottom-up Agglomerative clustering

Different algorithms differ in how the similarities are defined (and hence
updated) between two clusters

Single-Linkage
— Nearest Neighbor: similarity between
their closest members.

Complete-Linkage
— Furthest Neighbor: similarity between
their furthest members.

Centroid
— Similarity between the centers of gravity

Average-Linkage
— Average similarity of all cross-cluster pairs.
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Single-Linkage Method

Euclidean Distance
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Complete-Linkage Method

Euclidean Distance
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Dendrograms

Single-Linkage Complete-Linkage
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Another Example

Single Link Example Complete Link Example
— -

27



Single vs. Complete Linkage

Shape of clusters

Single-linkage allows anisotropic and g
non-convex shapes

Complete-linkage assumes isotopic, convex
shapes
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Computational Complexity
Lo”om—u': Chnkby-)

All hierarchical clustering methods need to compute similarity
of all pairs of n individual instances which is O(n?).

At each iteration,
— Sort similarities to find largest one O(n?log n).&—
— Update similarity between merged cluster and other clusters.

Computing similarity to each other cluster can be done in constant
time. g

So we get O(n? log n) or O(n3) (if naively implemented)

29



Computational Complexity (K-means)

At each iteration,

— Computing distance between each of the n objects and the
K cluster centers is O(Kn).

— Computing cluster centers: Each object gets added once to
some cluster: O(n).

* Assume these two steps are each done once for / iterations:
O(/Kn).
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What you need to know...

e Partition based clustering algorithms

— K-means -
* Coordinate descent
* Seeding %
* Choosing K
— Mixture models -
EM algorithm l

* Hierarchical clustering algorithms
— Single-linkage
— Complete-linkage
— Centroid-linkage
— Average-linkage



Unsupervised Learning

“Learning from unlabeled/unannotated data” (without supervision)

Training data |:>

{Xz'}?:l

Learning algorithm

What can we predict from unlabeled data?

o Density estimation

I:> Prediction rule

Jn

p(X)
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Unsupervised Learning

“Learning from unlabeled/unannotated data” (without supervision)

Training data |:>

{1 X iy

Learning algorithm

What can we predict from unlabeled data?

o Density estimation

o Groups or clusters in the data

I:> Prediction rule
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Unsupervised Learning

“Learning from unlabeled/unannotated data” (without supervision)

Training data |:> Learning algorithm |:> Prediction rule

What can we predict from unlabeled data?

o Density estimation -~

o Groups or clusters in the data —

o Dimensionality reduction —
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