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• How to estimate parameters? Max Likelihood
But don’t know labels Y (recall Gaussian Bayes classifier)

x1, . . . , xm ⇠ p(x) =
kX

i=1

p(x|Y = i)P (Y = i)

p(x|Y = i) ⇠ N (µi,⌃i)

{pi, µi,⌃i}Ki=1

Mixture models (Gaussian)



Expectation-Maximization (EM)
A general algorithm to deal with hidden data, but we will study it in 
the context of unsupervised learning (hidden labels)

• No need to choose step size as in Gradient methods.

• EM is an Iterative algorithm with two linked steps:

E-step: fill-in hidden data (Y) using inference

M-step: apply standard MLE/MAP method to estimate parameters

{pi, μi, Σi}
k

i=1

• This procedure monotonically improves the marginal 

likelihood (or leaves it unchanged). Thus it always converges 

to a local optimum of the likelihood.

k



EM for spherical, same variance GMMs
same mixture proportions

Initialize: µ1, µ2, …, µK randomly

E-step
Compute “expected” classes of all datapoints for each class
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In K-means “E-step”
we do hard assignment

EM does soft assignment



EM for spherical, same variance GMMs
same mixture proportions

Initialize: µ1, µ2, …, µK randomly

E-step
Compute “expected” classes of all datapoints for each class

M-step
Compute Max. like μ given our data’s class membership distributions (weights)

 

µi =  
P y = i x j( )

j=1

m

å x j

P y = i x j( )
j=1

m

å

In K-means “E-step”
we do hard assignment

EM does soft assignment

Iterate.

Exactly same as MLE with 
weighted data
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EM for general GMMs

E-step
Compute “expected” classes of all datapoints for each class

M-step
Compute MLEs given our data’s class membership distributions (weights)

Just evaluate a 
Gaussian at xj

Iterate.  On iteration t let our estimates be

lt = { μ1
(t), μ2

(t) … μk
(t), S1

(t), S2
(t) … Sk

(t), p1
(t), p2

(t) … pk
(t) }        

pi
(t) is shorthand for 

estimate of P(y=i) on 
t’th iteration
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EM for general GMMs: Example

µ1
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µ3S1

S2 S3

P(y =  |xj,µ1,µ2,µ3,S1,S2,S3,p1,p2,p3)



After 1st iteration



After 2nd iteration



After 3rd iteration



After 4th iteration



After 5th iteration



After 6th iteration



After 20th iteration



GMM clustering of assay data



General GMM

GMM – Gaussian Mixture Model  (Multi-modal distribution)
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p(x|y=i) ~ N(µi, Si)

p(x) = S p(x|y=i) P(y=i)
i

Mixture
proportion

Mixture
component



Resulting 
Density 

Estimator



Three 
classes of 

assay
(each learned with 

it’s own mixture 
model)



Resulting 
Bayes

Classifier



Summary: EM Algorithm
• A way of maximizing likelihood function for hidden variable models. Finds 

MLE of parameters when the original (hard) problem can be broken up 

into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current 

parameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

• Alternate between filling in the latent variables using the best guess 

(posterior) and updating the parameters based on this guess:

1. E-step:          soft cluster assignment for each data point

2. M-step: update parameters of each mixture component

• EM can get stuck in local minima.

• BUT Extremely popular in practice.
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Clustering Algorithms
• Partition algorithms

• K means clustering
• Mixture-Model based clustering

• Hierarchical algorithms
• Single-linkage
• Average-linkage
• Complete-linkage
• Centroid-based
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Hierarchical Clustering
• Bottom-Up Agglomerative Clustering

Starts with each object in a separate cluster, and repeat:
– Joins the most similar pair of clusters, 
– Update the similarity of the new cluster to others
until there is only one cluster.

Greedy – less accurate but simple to implement

• Top-Down divisive 
Starts with all the data in a single cluster, and repeat:
– Split each cluster into two using a partition algorithm
Until each object is a separate cluster.

More accurate but complex to implement
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Bottom-up Agglomerative clustering
Different algorithms differ in how the similarities are defined (and hence 
updated) between two clusters

• Single-Linkage 
– Nearest Neighbor: similarity between

their closest members.

• Complete-Linkage 
– Furthest Neighbor: similarity between

their furthest members.

• Centroid
– Similarity between the centers of gravity

• Average-Linkage
– Average similarity of all cross-cluster pairs.
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Another Example



Single vs. Complete Linkage
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Shape of clusters

Single-linkage allows anisotropic and 
non-convex shapes

Complete-linkage assumes isotopic, convex         
shapes
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Computational Complexity
• All hierarchical clustering methods need to compute similarity 

of all pairs of n individual instances which is O(n2).

• At each iteration, 
– Sort similarities to find largest one O(n2log n).
– Update similarity between merged cluster and other clusters.

Computing similarity to each other cluster can be done in constant 
time.

• So we get O(n2 log n) or O(n3) (if naïvely implemented)
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Computational Complexity (K-means)

• At each iteration, 
– Computing distance between each of the n objects and the 

K cluster centers is O(Kn).
– Computing cluster centers: Each object gets added once to 

some cluster: O(n).

• Assume these two steps are each done once for l iterations: 
O(lKn).



What you need to know…
• Partition based clustering algorithms

– K-means
• Coordinate descent
• Seeding
• Choosing K

– Mixture models
EM algorithm 

• Hierarchical clustering algorithms
– Single-linkage
– Complete-linkage
– Centroid-linkage
– Average-linkage
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Unsupervised Learning
“Learning from unlabeled/unannotated data” (without supervision)
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Learning algorithm

What can we predict from unlabeled data?

o Density estimation



Unsupervised Learning
“Learning from unlabeled/unannotated data” (without supervision)
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Learning algorithm

What can we predict from unlabeled data?

o Density estimation

o Groups or clusters in the data



Unsupervised Learning
“Learning from unlabeled/unannotated data” (without supervision)
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Learning algorithm

What can we predict from unlabeled data?

o Density estimation

o Groups or clusters in the data

o Dimensionality reduction


