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Summary of PAC bounds for finite 
model class

With probability ≥ 1-d, 
1)  For all h Î H s.t. errortrain(h) = 0, 

errortrue(h) ≤ e = 

2) For all h Î H
|errortrue(h) – errortrain(h)| ≤ e = 

2
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Haussler’s bound

Hoeffding’s bound
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What about continuous hypothesis 
spaces?

• Continuous model class (e.g. linear classifiers): 
– |H| = ¥
– Infinite gap???

• As with decision trees, complexity of model 
class only depends on maximum number of 
points that can be classified exactly (and not 
necessarily its size)! 3
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How many points can a linear 
boundary classify exactly? (1-D)
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How many points can a linear 
boundary classify exactly? (2-D)
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How many points can a linear 
boundary classify exactly? (d-D)
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PAC bound using VC dimension
• Number of training points that can be classified 

exactly is VC dimension!!!
– Measures relevant size of hypothesis space, as with 

decision trees with k leaves

Instead of ln|H|
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With probability ≥ 1-d, 



• You pick set of points
• Adversary assigns labels
• You find a hypothesis in H consistent with the labels

If VC(H) = k, then for all k+1 points, there exists a labeling that 
cannot be shattered (can’t find a hypothesis in H consistent with it) 

VC dimension

- +

-+
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Definition: VC dimension of a hypothesis space H is the 
maximum number of points such that there exists a 
hypothesis in H that is consistent with (can correctly classify) 
any labeling of the points.



PAC bound using VC dimension
• Number of training points that can be classified 

exactly is VC dimension!!!
– Measures relevant size of hypothesis space, as with 

decision trees with k leaves
– Bound for infinite dimension hypothesis spaces:
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Examples of VC dimension
• Linear classifiers: 
– VC(H) = d+1, for d features plus constant term
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Another VC dim. example - What can 
we shatter?

• What’s the VC dim. of decision stumps in 2D?

11

VC(H) ≥ 3 

- +

+

- +

-

+ +

-



Another VC dim. example - What 
can’t we shatter?

• What’s the VC dim. of decision stumps in 2D?

If VC(H) = 3, then for all placements of 4 pts, there exists a 

labeling that can’t be shattered
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Examples of VC dimension
• Linear classifiers: 
– VC(H) = d+1, for d features plus constant term

• Decision stumps:  VC(H) = d+1 (3 if d=2)
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Another VC dim. example - What can 
we shatter?

• What’s the VC dim. of axis parallel rectangles 
in 2D? sign(1- 2*1x Î rectangle)
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• What’s the VC dim. of axis parallel rectangles 
in 2D? sign(1- 2*1x Î rectangle)

• Some placement of 4 pts can’t be shattered

Another VC dim. example - What 
can’t we shatter?
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VC(H) ≥ 4 



Another VC dim. example - What 
can’t we shatter?

• What’s the VC dim. of axis parallel rectangles 
in 2D? sign(1- 2*1x Î rectangle)
If VC(H) = 4, then for all placements of 5 pts, there exists a 
labeling that can’t be shattered

4 collinear 2 in convex hull      1 in convex hull pentagon
of other 3 of other 4
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Examples of VC dimension
• Linear classifiers: 
– VC(H) = d+1, for d features plus constant term

• Decision stumps:  VC(H) = d+1

• Axis parallel rectangles:   VC(H) = 2d   (4 if d=2)

• 1 Nearest Neighbor:
17

VC(H) = ∞



VC dimension and size of hypothesis 
space

• To be able to shatter m points, how many 
hypothesis do we need?

2m labelings |H|≥ 2m

Given |H| hypothesis can hope to shatter max 
m=log2|H| points

VC(H) ≤ log2|H|

So VC bound is tighter.
18
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Summary of PAC bounds
With probability ≥ 1-d,  
1) for all h Î H s.t. errortrain(h) = 0, 

errortrue(h) ≤ e = 

2) for all h Î H, 
|errortrue(h) – errortrain(h)| ≤ e = 

3)   for all h Î H, 
|errortrue(h) – errortrain(h)| ≤ e = 
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Limitation of VC dimension
• Hard to compute for many hypothesis spaces

VC(H) ≥ lower bound (easy)
VC(H) = …   (HARD!)

For all placements of VC(H)+1 points, there exists a labeling 
that can’t be shattered

• Too loose for many hypothesis spaces
linear SVMs, VC dim = d+1  (d features)
kernel SVMs, VC dim = ??

= ∞ (Gaussian kernels) 
Deep Neural nets, VC dim = very large

Suggests Gaussian kernels and deep nets are really BAD!! But 
contradicts practice! 20



What you need to know
• PAC bounds on true error in terms of empirical/training 

error and complexity of hypothesis space

• Complexity of the classifier depends on number of 

points that can be classified exactly

– Finite case – Number of hypothesis

– Infinite case – VC dimension 

Other bounds – Rademacher complexity (data 

dependent), Margin based (complexity low if margin 

achieved high), Mistake bounds, …
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