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Summary of PAC bounds for finite
model class

With probability > 1-0,
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What about continuous hypothesis
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e Continuous model class (e.g. linear classifiers):
SLIEE:
— Infinite gap???
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* As with decision trees, complexity of model
class only depends on maximum number of

points that can be classified exactly (and not

necessarily its size)! o~ K ‘(‘;}"ﬁ”_‘} 3
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«,~— How many points can a linear
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»~ boundary classify exactly? (1-D)
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There exists placement s.t. all labelings can be classified



How many points can a linear
boundary classify exactly? (2-D)
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There exists placement s.t. all labelings can be classified




How many points can a linear
boundary classify exactly? (d-D)
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PAC bound using VC dimension

 Number of training points that can be classified
exactly is VC dimension!!!
— Measures relevant size of hypothesis space, as with

decision trees with k leaves K E
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VC dimension
dm}(a

»
Definition: VC dimension of a hypo{hesis space H is the

maximum number of points such that/there exists a
hypothesis in H that is consistent with (can correctly classify)
any labeling of the points. 7,
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* You pick set of points O o

* Adversary assigns labels + _
* You find a hypothesis in H consistent with the labels @ o

If VC(H) =k, then for all k+1 points, there existsa labeling that
cannot be shattered (can’t find a hypothesis in H consistent with it)
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PAC bound using VC dimension

 Number of training points that can be classified

exactly is VC dimension!!!

— Measures relevant size of hypothesis space, as with
decision trees with k leaves

— Bound for infinite dimension hypothesis spaces:

w.p. = 1-0
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Examples of VC dimension

* Linear classifiers:

— VC(H) = d+1, for d features plus constant term
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Another VC dim. example - What can
we shatter?

 What’s the VC dim. of decision stumps in 2D?
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Another VC dim. example - What
can’t we shatter?

 What’s the VC dim. of decision stumps in 2D?

If VC(H) = 3, then for all placements of 4 pts, there exists a
labeling that can’t be shattered

1 in convex hull

guadrilateral
of other 3

3 collinear
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Examples of VC dimension

* Linear classifiers:

— VC(H) = d+1, for d features plus constant term

* Decision stumps: VC(H)=d+1 (3 if d=2)
—
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Another VC dim. example - What can
£, é* we shatter?

 What’s the VC dim. of axis parallel rectangles

in 2D?  sign(1- 2*1 ':_ ] éfz
dim=2 8 ( X € rectangle)+ Hf |
v
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Another VC dim. example - What

can’t we shatter?

 What’s the VC dim. of axis parallel rectangles

in2D? Sign(l' 2>|<1x S rectangle)

L g [

 Some placement of 4 pts can’t be shattered
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Another VC dim. example - What
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can’t we shatter?
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 What’s the VC dim. of axis parallel rectangles

Sign(l' 2>|<1x c rectangle)
If VC(H) = 4, then for all placements of 5 pts, there exists a

in 2D?

labeling that can’t be shattered

4 collinear

2 in convex hull
of other 3

1 in convex hull

of other 4

pentagon

+
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Examples of VC dimension

* Linear classifiers:
= VC(H) = d+1, for d features plus constant term

/* Decision stumps: VC(H) =d+1

2 d- ¢
7o Axis parallel rectangles: VC(H)=2d (4 if d=2)

pm—

* 1 Nearest Neighbor:  vc(H) = e
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VC dimension and size of hypothesis
space  vciw) Ml

* To be able to shatter m points, how many
hypothesis do we need?

2™ [abelings = |[H[=2m

Given |H| hypothesis can hope to shatter max
m=log, |H| points

VC(H) < log, |H|

So VC bound is tighter.
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Summary of PAC bounds

With probability = 1-0,
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Limitation of VC dimension

* Hard to compute for many hypothesis spaces

VC(H) = lower bound (eggy)

VC(H) = ... (HARD!)
For all placements of VC(H)+1 points, there exists a labeling
that can’t be shattered

* Too loose for many hypothesis spaces

linear SVMs, VC dim = d+1 (d features)

kernel SVMs, VC dim = ??
= oo (Gaussian kernels)

P

Deep Neural nets, VC dim = very large

Suggests Gaussian kernels and deep nets are really BAD!! But
contradicts practice!
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What you need to know

* PAC bounds on true error in terms of empirical/training
error and complexity of hypothesis space

 Complexity of the classifier depends on number of
points that can be classified exactly

— Finite case — Number of hypothesis
— Infinite case — VC dimension

Other bounds — Rademacher complexity (data
dependent), Margin based (complexity low if margin
achieved high), Mistake bounds, ...




