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Logistics
• Anonymous feedback form

• Recitation on Friday Sept 11 – MLE/MAP + Optimization 
methods review and hands-on exercises

• QnA1 due TODAY 

• HW1 to be released TODAY
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https://forms.gle/SoeWmoLmbGEpeH998


Why is ML not …
Ø Interpolation?

– Noise, stochasticity, transfer across domains, …

Ø Statistics?
– care about computationally efficiency (feasible, at least 

polynomial time in input size but typically much faster)

Ø Optimization?
– Don’t know true objective function, only stochastic version 

computed using data samples

Ø Data mining?
– Generalization on new unseen data

Ø Your question?
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Unsupervised Learning
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Distribution of words in text

Bias of a coin

Img src: tablelifeblog.com ,data.world

Learning a Distribution

Distribution of brain activity under stimuli



Notion of “Features aka Attributes”

How to represent inputs mathematically?
• Document vector X 

– list of words (different length for each document)
– frequency of words (length of each document = size of 

vocabulary), also known as Bag-of-words approach
Misses out context!!

– list of n-grams (n-tuples of words)
5

Input

Document/Article
remember to wake up when class ends

=
wake ends to class remember up when

Ø Ideas?

Ø Why might 
this be 
limited?



How to represent inputs mathematically?
• Image X = intensity/value at each pixel, fourier transform 

values, SIFT etc. 
• Market information X = daily/monthly? price of share for past 

10 years

Notion of “Features aka Attributes”
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Input

Images Market information 

Input



Distribution of Inputs

Discrete Probability Distribution P(X) = P(X=x)
e.g. P(head) = ½, P(word x in text) = px

Probabilities in a distribution sum to 1 
∑xP(X=x) = 1 P(tail) = 1 – p(head), ∑x px =1

Continuous Probability density p(x)       P(a<=X<=b) =∫"
# $ % &%

e.g. p(brain activity) 

Probability density integrate to 1
∫$ % &% = 1
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Input



Distributions in Supervised tasks

• Distribution learning also arises in supervised learning tasks 
e.g. classification

P(Y= y) Distribution of class labels
P(X = x |Y = y) Distribution of words in ‘news’ documents

Distribution of brain activity under ‘stress’

P(Y = y|X = x)   Distribution of topics given document 8

Input

Olaf simons’10



Classification

High Stress
Moderate Stress
Low Stress

Input feature vector, X Label, Y

Goal:

In general: label Y can belong to more than two classes
X is multi-dimensional (many features represent an input)

But lets start with a simple case: 
label Y is binary (either “Stress” or “No Stress”)
X is average brain activity in the “Amygdala”



Binary Classification

No Stress

Stress

X, average brain activity in “Amygdala”

low high

f(X)

Model X and Y as random variables with joint distribution PXY

Training data {Xi, Yi}n
i=1 ~ iid (independent and identically distributed) 

samples from PXY

Test data {X,Y} ~ iid sample from PXY

Training and test data are independent draws from same distribution

Test 
subject



Bayes Classifier
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Model X and Y as random variables

For a given X, f(X) = label Y which is more likely

f(X) = 

0

0.5

1

X

No Stress

Stress

X, average brain activity in “Amygdala”

low high

f(X)
Test 
subject



Bayes Rule
Bayes Rule:

12Thomas Bayes

To see this, recall:

P(X,Y) = P(X|Y) P(Y)

P(Y,X) = P(Y|X) P(X)



Bayes Classifier
Bayes Rule:

Bayes classifier:
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Class conditional 
Distribution of features

Distribution of class

f(X) = 



Bayes Classifier
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Class conditional 
Distribution of features

Class distribution

We can now consider appropriate distribution models for the two terms:

Class distribution P(Y=y)

Class conditional distribution of features P(X=x|Y=y)

No Stress

Stress

X, average brain activity in “Amygdala”

low high

f(X) Test 
subject

f(X) = 



Modeling class distribution
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= q = 1 - q

Modeling Class distribution P(Y=y)

Like a coin flip

No Stress

Stress

X, average brain activity in “Amygdala”

low high

f(X) Test 
subject

= Bernoulli(q)



How to learn parameters from data?
MLE

(Discrete case)
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Learning parameters in distributions
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= q = 1 - q

Learning θ is equivalent to learning probability of head in coin flip. 

Ø How do you learn that?

Data = 

Answer: 3/5

Ø Why??



Bernoulli distribution
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Data, D =

• P(Heads) = q,  P(Tails) = 1-q

• Flips are i.i.d.:
– Independent events
– Identically distributed according to Bernoulli distribution

Choose q that maximizes the probability of observed data
aka Likelihood



Maximum Likelihood Estimation (MLE)

Choose q that maximizes the probability of observed data (aka 
likelihood)

MLE of probability of head:
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= 3/5

“Frequency of heads”



Short detour - Optimization
• Optimization objective J(q)
• Minimum value J* = minq J(q)
• Minima (points at which minimum value is achieved) may 

not be unique

• If function is strictly convex, then minimum is unique
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Convex functions
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J(q)

q

A function J(q) is called convex if
the line joining two points
J(q1),J(q2) on the function does
not go below the function on the
interval [q1, q2]

q1 q2

J(q1)

J(q2)

(Strictly) Convex functions 
have a unique minimum!

Convex Both Concave 
& Convex

Neither Convex but not 
strictly convex



Optimizing convex (concave) functions

• Derivative of a function

– Partial derivative
• Derivative is zero at minimum of a convex function

• Second derivative is positive at minimum of a convex 
function
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Optimizing convex (concave) functions
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Ø What about 
concave functions? 
non-convex/non-concave functions? 
functions that are not differentiable? 
optimizing a function over a bounded domain aka 
constrained optimization?



Maximum Likelihood Estimation (MLE)

Choose q that maximizes the probability of observed data (aka 
likelihood)

MLE of probability of head:
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= 3/5

“Frequency of heads”


