Learning Distributions Maximum Likelihood Estimate (MLE) Bayes Classifier

Aarti Singh

Machine Learning 10-315 Sept 9, 2020

Logistics

- Anonymous feedback form
- Recitation on Friday Sept 11 MLE/MAP + Optimization methods review and hands-on exercises
- QnA1 due TODAY
- HW1 to be released TODAY

Why is ML not ...

> Interpolation?

- Noise, stochasticity, transfer across domains, ...
- Statistics?
 - care about computationally efficiency (feasible, at least polynomial time in input size but typically much faster)

> Optimization?

E[lose (f(x), y)]

Don't know true objective function, only stochastic version computed using data samples

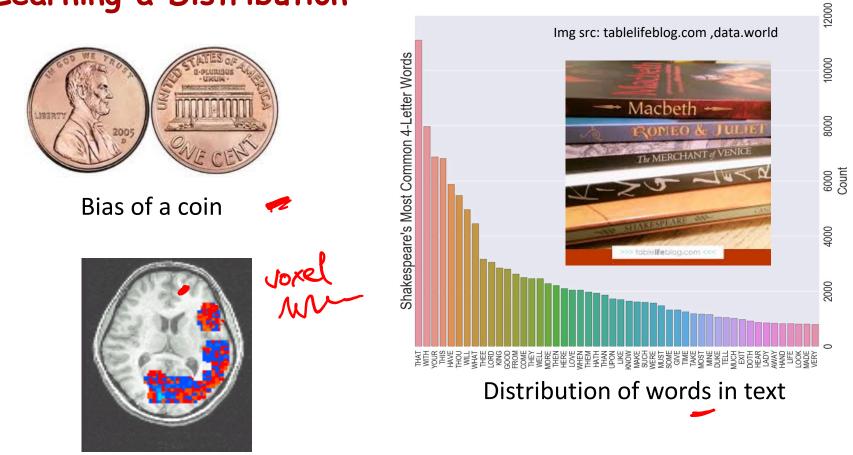
Data mining?

Generalization on new unseen data

> Your question?

Unsupervised Learning

Learning a Distribution



Distribution of brain activity under stimuli

Notion of "Features aka Attributes"

Input $X \in \mathcal{X}$

Document/Article

remember to wake up when class ends wake ends to class remember up when

y? [x]= How to represent inputs mathematically?

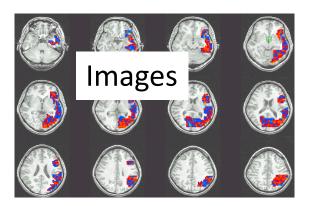
- Document vector X > Ideas?
 - list of words (different length for each document)
 - frequency of words (length of each document = size of vocabulary), also known as **Bag-of-words** approach Why might

Misses out context!!

 list of n-grams (n-tuples of words) n=2 this be limited?

Notion of "Features aka Attributes"

Input $X \in \mathcal{X}$



Input $X \in \mathcal{X}$

How to represent inputs mathematically?

- Image X = intensity/value at each pixel, fourier transform values, SIFT etc.
- Market information X = daily/monthly? price of share for past 10 years

Distribution of Inputs

Input $X \in \mathcal{X}$

Discrete Probability Distribution P(X) = P(X=x)

e.g. P(head) = $\frac{1}{2}$, P(word x in text) = p_x

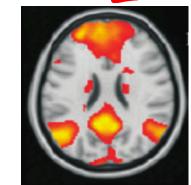
Probabilities in a distribution sum to 1

 $V(x=x) \ge 0$ $\sum_{x} P(X=x) = 1$ $P(tail) = 1 - p(head), \sum_{x} p_{x} = 1$

Continuous Probability density p(x) e.g. p(brain activity)

Probability density integrate to 1 $p(x) \ge 0$ $\oint p(x)dx = 1$

$$P(a \le X \le b) = \int_a^b p(x) dx$$

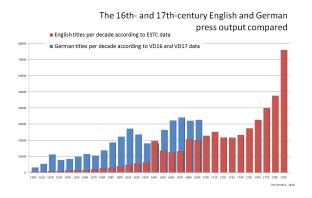


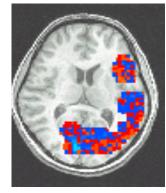
Distributions in Supervised tasks

Input $X \in \mathcal{X}$

• Distribution learning also arises in supervised learning tasks e.g. classification

P(Y=y) for Distribution of class labels
 P(X = x | Y = y) Distribution of words in 'news' documents
 Distribution of brain activity under 'stress'





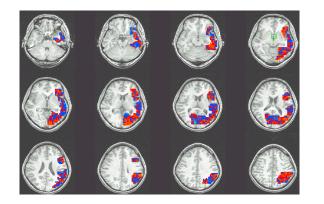
Olaf simons'10

P(Y = y | X = x) Distribution of topics given document

Classification

<u>Goal</u>:

Construct **prediction rule** $f : \mathcal{X} \to \mathcal{Y}$



High Stress Moderate Stress Low Stress

Input feature vector, X

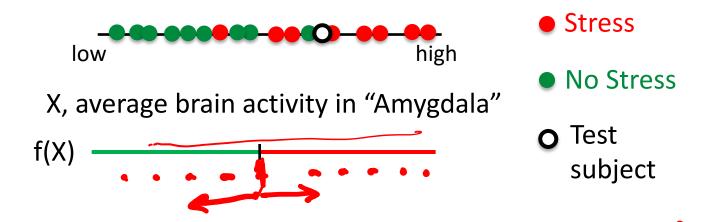
Label, Y

In general: label Y can belong to more than two classes X is multi-dimensional (many features represent an input)

But lets start with a simple case:

label Y is binary (either "Stress" or "No Stress")
X is average brain activity in the "Amygdala" = X ∈ R

Binary Classification

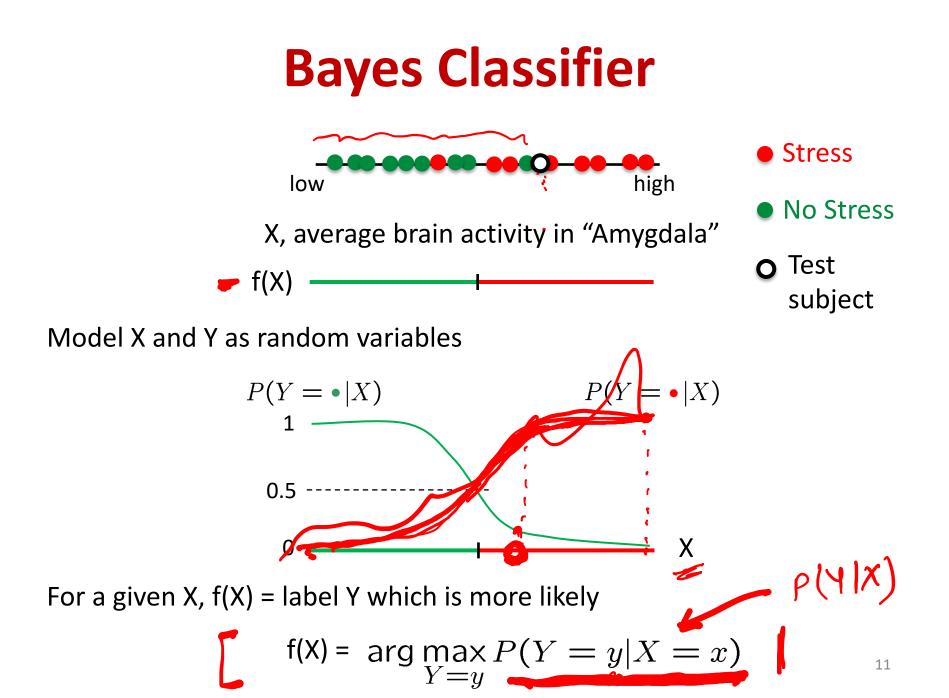


Model X and Y as random variables with joint distribution $P_{XY} = \int (X_{Y})^{2}$

Training data $\{X_i, Y_i\}_{i=1}^n \sim iid$ (independent and identically distributed) samples from P_{XY}

Test data $\{X,Y\}$ ~ iid sample from P_{XY}

Training and test data are independent draws from **<u>same</u>** distribution



Bayes Rule

Bayes Rule:
$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$
.
 $P(X = x|Y = y)P(Y = y)$

$$P(Y = y | X = x) = \frac{T(X = x | T = y)T(T = y)}{P(X = x)}$$

To see this, recall:

P(X,Y) = P(X|Y) P(Y) P(Y,X) = P(Y|X) P(X) P(Y(X) = P(X|Y)P(Y) P(X)

)

Bayes Classifier

Bayes Rule:
$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

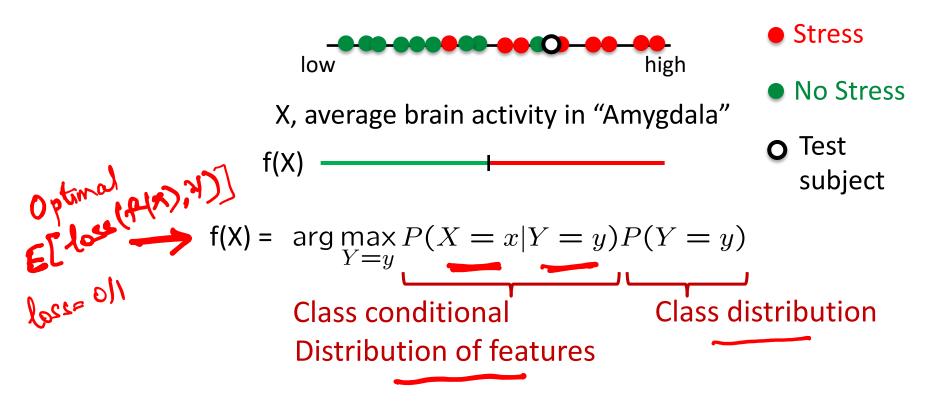
 $P(Y = y|X = x) = \frac{P(X = x|Y = y)P(Y = y)}{P(X = x)}$

Bayes classifier:

$$f(X) = \arg \max_{Y=y} P(Y = y | X = x)$$

$$= \arg \max_{Y=y} P(X = x | Y = y) P(Y = y)$$
Class conditional
Distribution of class
Distribution of features

Bayes Classifier

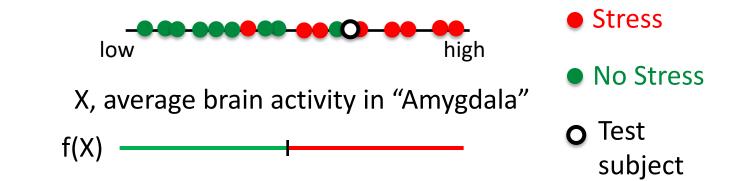


We can now consider appropriate distribution models for the two terms:

Class distribution P(Y=y) </

Class conditional distribution of features P(X=x|Y=y)
 ✓

Modeling class distribution



Modeling Class distribution $P(Y=y) = Bernoulli(\theta)$

$$P(Y = \bullet) = \theta_{\text{parameter}} \quad P(Y = \bullet) = 1 - \theta$$

Like a coin flip

How to learn parameters from data? MLE

(Discrete case)

Learning parameters in distributions $P(Y = \bullet) = \theta$ $P(Y = \bullet) = 1 - \theta$

Learning θ is equivalent to learning probability of head in coin flip.

How do you learn that?

Bernoulli distribution

- P(Heads) = θ , P(Tails) = 1- θ
- Flips are **i.i.d.**:
 - Independent events
 - Identically distributed according to Bernoulli distribution

<u>Choose θ that maximizes the probability of observed data aka Likelihood</u>

Maximum Likelihood Estimation (MLE)

Choose θ that maximizes the probability of observed data (aka likelihood) $\widehat{\theta}_{MLE} = \arg \max_{\theta} \widehat{P(D \mid \theta)} \stackrel{\text{Did} \ drow}{f(D \mid \theta)}$

MLE of probability of head:

$$\widehat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T} = 3/5$$

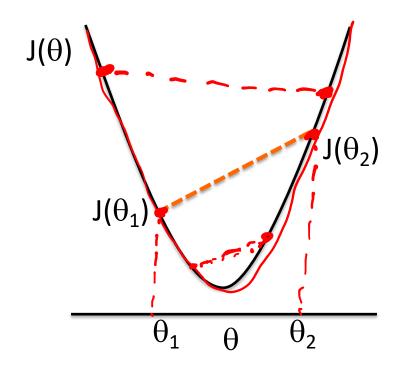
"Frequency of heads"

Short detour - Optimization

- Optimization objective $J(\theta)$
- Minimum value $J^* = \min_{\theta} J(\theta)$ $\mathcal{M} \xrightarrow{\mathcal{M}} \mathcal{J}(\theta)$
- Minima (points at which minimum value is achieved) may not be unique

• If function is strictly convex, then minimum is unique

Convex functions



A function J(θ) is called **convex** if the line joining two points J(θ_1),J(θ_2) on the function does not go below the function on the interval [θ_1 , θ_2]

(Strictly) Convex functions have a unique minimum!

Both Concave & Convex

Neither

Convex but not

strictly convex²¹

Optimizing convex (concave) functions

92(0)

- Derivative of a function $\int \frac{\Delta J(\theta)}{\delta \sigma} = \lim_{\varepsilon \to 0} \frac{J(\theta + \varepsilon) - J(\theta - \varepsilon)}{2\varepsilon}$
 - Partial derivative

 $g(\theta) = \frac{\partial J(\theta)}{\partial J(\theta)} = 0$

Derivative is zero at minimation of a convex function

• Second derivative is positive at minimum of a convex function $\frac{390}{10} = \frac{310}{10} \neq 0$

Optimizing convex (concave) functions

➤ What about

concave functions?

non-convex/non-concave functions?

functions that are not differentiable?

optimizing a function over a bounded domain aka constrained optimization?

Maximum Likelihood Estimation (MLE)

Choose $\boldsymbol{\theta}$ that maximizes the probability of observed data (aka likelihood)

$$\widehat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta)$$
(i) $P - id$
(j) $P - id$

MLE of probability of head:

$$\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T} = 3/5$$

"Frequency of heads"