Learning Distributions Maximum Likelihood Estimate (MLE) Bayes Classifier

Aarti Singh

Machine Learning 10-315 Sept 14, 2020

Modeling class distribution

Like a coin flip

Bernoulli distribution

-
- P(Heads) = θ , P(Tails) = $1-\theta$

Flips are **i.i.d.:**

Independent events

Identically distributed • Flips are **i.i.d.**: – **Independent** events – **Identically distributed** according to Bernoulli distribution $X_i \sim \text{Re}(0)$ Choose θ that maximizes the probability of observed data aka Likelihood

Choose θ that maximizes the probability of observed data (aka likelihood)

$$
\widehat{\theta}_{MLE} \ = \ \arg\max_{\theta} \ \ P(D \mid \theta)
$$

Derivation
$$
D=\{X_1...X_n\}
$$

\n $\hat{\theta}_{MLE} = \arg \max_{\theta} P(D|\theta)$
\n $\theta_{n\theta}^{\text{max}} \{(\theta) = \arg \max_{\theta} \frac{\pi}{|\theta|} P(X_i|\theta) \times \lim_{\theta} \frac{\pi}{|\theta|}$
\n $\theta_{n\theta}^{\text{max}} \theta_{n\theta}^{\text{max}} = \arg \max_{\theta} \lim_{\theta \to 0} \theta_{n\theta}^{\text{max}} \lim_{\theta \to 0} \frac{X_i - \text{Re}(\theta)}{P(X_i \cdot \theta) - \theta}$
\n $= \arg \max_{\theta} \theta_{n\theta}^{\text{max}} \theta_{n\theta}^{\text{max}} \lim_{\theta \to 0} \frac{X_i - \text{Re}(\theta)}{P(X_i \cdot \theta) - \theta}$
\n $\frac{\partial J(\theta)}{\partial \theta} = \lim_{\theta \to 0} \frac{X_{\theta} - \frac{\pi}{|\theta|} \theta}{\theta} - \frac{\pi}{|\theta|} \lim_{\theta \to 0} \frac{\pi}{|\theta|}$

Derivation

 $\widehat{\theta}_{MLE}$ = arg max $P(D | \theta)$ $\frac{d\mu}{d\theta} - \frac{d\tau}{1-\theta} = 0 \Rightarrow \frac{d\mu}{\theta} = \frac{d\tau}{1-\theta}$ $\Rightarrow d_{H}-d_{H}\theta=d_{T}\theta \Rightarrow \hat{\theta}_{\text{NE}}=\frac{d_{H}}{d_{U}+d_{T}}$ y is the feat $x = \frac{3}{2}e^{i(x)}$

Modeling class distribution

• High Stress

- Moderate Stress
- Low Stress

subject

\triangleright How do we model multiple (>2) classes?

Modeling Class distribution $P(Y) = Multinomial(p_H, p_M, p_L)$ $=$ p_H $P(Y = \bullet)$ = p_M $P(Y = \bullet)$ = p_L $p_H + p_M + p_L = 1$

Like a dice roll

Multinomial distribution

Data, $D =$ rolls of a dice

$$
1, 6, 5, 2, 2, 1, 3, 4, \ldots
$$

- $P(1) = p_1$, $P(2) = p_2$, ..., $P(6) = p_6$, $p_1 + ... + p_6 = 1$
- Rolls are **i.i.d.**:
	- **Independent** events
	- $-$ **Identically distributed** according to Multinomial(θ) distribution where

$$
\theta = \{p_1, p_2, \dots, p_6\}
$$

Choose θ that maximizes the probability of observed data aka "Likelihood"

Choose θ that maximizes the probability of observed data

$$
\widehat{\theta}_{MLE} = \arg \max_{\theta} P(D | \theta) \leftarrow
$$

MLE of probability of rolls:

$$
\hat{\theta}_{MLE} = \hat{p}_{1,MLE}, \dots, \hat{p}_{6,MLE}
$$
\n
$$
\hat{p}_{y,MLE} = \frac{\alpha_y \leftarrow \text{At time due rolls}}{\sum_y \alpha_y \leftarrow \text{total number of rolls}}
$$
\n"Frequency of roll y"

Bayes Classifier

We can now consider appropriate distribution models for the two terms:

Class distribution P(Y=y)

Class conditional distribution of features $P(X=x | Y=y)$

1-dim Gaussian distribution

X is Gaussian N(μ , σ^2)

$$
P(X = x | \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \frac{-(x-\mu)^2}{e^2}
$$

Why Gaussian?

- Properties μ_1 ²
	- Fully Specified by first and second order statistics
		- Uncorrelated \Leftrightarrow Independence
	- X, Y Gaussian => aX+bY Gaussian

 $P(x, Y) = P(x) P(Y)$ $E[X,Y]=0$

 $E[X;X]$ $E[X;X]$

- Central limit theorem: if X_1 , ..., X_n are any iid random variables with mean μ and variance $\sigma^2 < \infty$

then

$$
\sqrt{n} \left(\sum_{i=1}^{n} X_i \right) - \mu \rightarrow N(0, \sigma^2)
$$

How to learn parameters from data? MLE

(Continuous case)

Gaussian distribution

How many hours did you sleep last night?

\triangleright Poll

- Parameters: μ mean, σ^2 variance
- Sleep hrs are **i.i.d.**:

X :- sleep for J person i
- ang brain actrity J passon i

- **Independent** events
- **Identically distributed** according to Gaussian distribution

Choose $\theta = (\mu, \sigma^2)$ that maximizes the probability of observed data

$$
\widehat{\theta}_{MLE} = \arg \max_{\theta} P(D | \theta) \qquad \sum \{\lambda_{i} \dots \lambda_{n}\}
$$

$$
= \arg \max_{\theta} \prod_{i=1}^{n} P(X_{i} | \theta) \qquad \text{Independent draws}
$$

Choose $\theta = (\mu, \sigma^2)$ that maximizes the probability of observed data

$$
\hat{\theta}_{MLE} = \arg \max_{\theta} P(D | \theta)
$$
\n
$$
= \arg \max_{\theta} \prod_{i=1}^{n} P(X_i | \theta) \qquad \text{Independent draws}
$$
\n
$$
= \arg \max_{\theta} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(X_i - \mu)^2 / 2\sigma^2} \qquad \text{Identically distributed}
$$

Choose $\theta = (\mu, \sigma^2)$ that maximizes the probability of observed data

$$
\hat{\theta}_{MLE} = \arg \max_{\theta} P(D | \theta)
$$
\n
$$
= \arg \max_{\theta} \prod_{i=1}^{n} P(X_i | \theta)
$$
\n
$$
= \arg \max_{\theta} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(X_i - \mu)^2 / 2\sigma^2}
$$
\n
$$
= \arg \max_{\theta = (\mu, \sigma^2)} \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\sum_{i=1}^{n} (X_i - \mu)^2 / 2\sigma^2}
$$
\n
$$
= \arg \max_{\theta = (\mu, \sigma^2)} \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\sum_{i=1}^{n} (X_i - \mu)^2 / 2\sigma^2}
$$
\n
$$
J(\theta) = \frac{1}{\sigma} J(\mu) = 0
$$

Derivation $\widehat{\theta}_{MLE}$ = arg max $P(D | \theta)$

Groups 1-10: **Jamboard 1 10** Groups 11-20: [Jamboard_11_20](https://jamboard.google.com/d/10gwefNLhK7rVwRtPFN-szOXl1ihL-P62l4orwJ0DMZk/edit?usp=sharing)

1-dim Gaussian Bayes classifier

