Learning Distributions Maximum Likelihood Estimate (MLE) Bayes Classifier

Aarti Singh

Machine Learning 10-315 Sept 14, 2020

Modeling class distribution

Like a coin flip

Bernoulli distribution

• P(Heads) = θ , P(Tails) = 1- θ

Choose $\boldsymbol{\theta}$ that maximizes the probability of observed data (aka likelihood)

$$\widehat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta)$$

Derivation

 $\hat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta)$ $\frac{\sqrt{11}}{9} - \frac{\sqrt{11}}{1-9} = 0 \implies \frac{\sqrt{11}}{9} = \frac{\sqrt{11}}{1-9}$ $\Rightarrow \qquad \forall H - dH = dT \theta \Rightarrow \qquad \theta = dH \\ NE = dH dT$ y fx geat X; € data point $\chi \sim Ber(\Theta)$ $\chi_{1-}, \chi_{n} \xrightarrow{Hd} Ber(\Theta)$ $\chi_{1-}, \chi_{n} \xrightarrow{PLX=\chi_{1}}$

Modeling class distribution

• High Stress

- Moderate Stress
- Low Stress

O Test subject

> How do we model multiple (>2) classes?

Modeling Class distribution P(Y) = Multinomial(p_H, p_M, p_L) $P(Y = \bullet) = p_H P(Y = \bullet) = p_M P(Y = \bullet) = p_L$

Like a dice roll

Multinomial distribution

Data, D = rolls of a dice

- $P(1) = p_1$, $P(2) = p_2$, ..., $P(6) = p_6$ $p_1 + ... + p_6 = 1$
- Rolls are **i.i.d.**:
 - Independent events
 - Identically distributed according to Multinomial(θ) distribution where

$$\theta = \{p_1, p_2, ..., p_6\}$$

Choose θ that maximizes the probability of observed data <u>aka "Likelihood"</u>

Choose $\boldsymbol{\theta}$ that maximizes the probability of observed data

$$\widehat{\theta}_{MLE} = \arg \max_{\substack{\theta \\ \theta \\ P = P \\ P = P \\ R = P \\$$

MLE of probability of rolls:

 $\hat{\theta}_{MLE} = \hat{p}_{1,MLE}, \dots, \hat{p}_{6,MLE}$ $\hat{p}_{y,MLE} = \frac{\alpha_y}{\sum_y \alpha_y} \underbrace{\leftarrow}_{\text{Rolls that turn up y}}^{\text{Holls that turn up y}}$ "Frequency of roll y"

Bayes Classifier

We can now consider appropriate distribution models for the two terms:

Class distribution P(Y=y)

Class conditional distribution of features P(X=x|Y=y)

Modeling class conditional distribution of feature P(X=x|Y=y)> What distribution would you use? E.g. $P(X=x|Y=y) = Gaussian N(\mu_y \sigma_y^2)$ $P(X=x|Y=\bullet)$

1-dim Gaussian distribution

X is Gaussian N(μ , σ^2)

$$P(X = x | \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Why Gaussian?

- Properties
 - Fully Specified by first and second order statistics
 - Uncorrelated ⇔ Independence
 - X, Y Gaussian => aX+bY Gaussian

P(x, y) = P(x) P(y)E[x, y] = 0

E[Xi] E[XiXi]

– <u>Central limit theorem</u>: if X_1 , ..., X_n are any iid random variables with mean μ and variance $\sigma^2 < \infty$

then

$$\sqrt{n}(\frac{1}{n}\sum_{i=1}^{n}X_{i}) - \mu) \xrightarrow{h \to \infty} N(0, \sigma^{2})$$

How to learn parameters from data? MLE

(Continuous case)

Gaussian distribution

How many hours did you sleep last night?

- Parameters: μ mean, σ^2 variance
- Sleep hrs are **i.i.d.**:

X: - sleep for J person i - avg brain activity J person i

- Independent events
- Identically distributed according to Gaussian distribution

Choose $\theta = (\mu, \sigma^2)$ that maximizes the probability of observed data

$$\widehat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta) \qquad \underbrace{\mathsf{D}}_{\{X_{i},...,X_{n}\}}^{n}$$
$$= \arg \max_{\theta} \prod_{i=1}^{n} P(X_{i} \mid \theta) \qquad \text{Independent draws}$$

Choose $\theta = (\mu, \sigma^2)$ that maximizes the probability of observed data

$$\begin{split} \widehat{\theta}_{MLE} &= \arg \max_{\theta} P(D \mid \theta) \\ &= \arg \max_{\theta} \prod_{i=1}^{n} P(X_i | \theta) \text{ Independent draws} \\ &= \arg \max_{\theta} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(X_i - \mu)^2/2\sigma^2} \text{ Identically distributed} \end{split}$$

Choose $\theta = (\mu, \sigma^2)$ that maximizes the probability of observed data

$$\begin{aligned} \widehat{\theta}_{MLE} &= \arg \max_{\theta} P(D \mid \theta) \\ &= \arg \max_{\theta} \prod_{i=1}^{n} P(X_i | \theta) \quad \text{Independent draws} \\ &= \arg \max_{\theta} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(X_i - \mu)^2/2\sigma^2} \quad \substack{\text{Identically} \\ \text{distributed}} \\ &= \arg \max_{\theta = (\mu, \sigma^2)} \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\sum_{i=1}^{n} (X_i - \mu)^2/2\sigma^2} \quad \substack{\text{identically} \\ \text{distributed}} \\ &= \arg \max_{\theta = (\mu, \sigma^2)} \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\sum_{i=1}^{n} (X_i - \mu)^2/2\sigma^2} \quad \substack{\text{identically} \\ \text{distributed}} \\ &= \arg \max_{\theta = (\mu, \sigma^2)} \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\sum_{i=1}^{n} (X_i - \mu)^2/2\sigma^2} \quad \substack{\text{identically} \\ \text{distributed}} \\ &= \arg \max_{\theta = (\mu, \sigma^2)} \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\sum_{i=1}^{n} (X_i - \mu)^2/2\sigma^2} \quad \substack{\text{identically} \\ \text{distributed}} \\ &= \arg \max_{\theta = (\mu, \sigma^2)} \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\sum_{i=1}^{n} (X_i - \mu)^2/2\sigma^2} \quad \substack{\text{identically} \\ \text{distributed}} \\ &= \arg \max_{\theta = (\mu, \sigma^2)} \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\sum_{i=1}^{n} (X_i - \mu)^2/2\sigma^2} \quad \substack{\text{identically} \\ \text{distributed}} \\ &= \arg \max_{\theta = (\mu, \sigma^2)} \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\sum_{i=1}^{n} (X_i - \mu)^2/2\sigma^2} \quad \substack{\text{identically} \\ \text{distributed}} \\ &= \arg \max_{\theta = (\mu, \sigma^2)} \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\sum_{i=1}^{n} (X_i - \mu)^2/2\sigma^2} \quad \substack{\text{identically} \\ \text{distributed}} \\ &= \arg \max_{\theta = (\mu, \sigma^2)} \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\sum_{i=1}^{n} (X_i - \mu)^2/2\sigma^2} \quad \substack{\text{identically} \\ \text{distributed}} \\ &= \arg \max_{\theta = (\mu, \sigma^2)} \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\sum_{i=1}^{n} (X_i - \mu)^2/2\sigma^2} \quad \substack{\text{identically} \\ \text{distributed}} \\ &= \arg \max_{\theta = (\mu, \sigma^2)} \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\sum_{i=1}^{n} (X_i - \mu)^2/2\sigma^2} \quad \substack{\text{identically} \\ \text{distributed}} \\ &= \arg \max_{\theta = (\mu, \sigma^2)} \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\sum_{i=1}^{n} (X_i - \mu)^2/2\sigma^2} e^{-\sum_{i=1}^{n} (X_i - \mu)^2/2\sigma^2}$$

$\widehat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta)$

Groups 1-10: <u>Jamboard 1 10</u> Groups 11-20: <u>Jamboard 11 20</u>

1-dim Gaussian Bayes classifier

