
d-dim Gaussian Bayes classifier
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f(X) = 

Ø What decision 
boundaries can we 
get in d-dim?
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• Decision boundary is set of points x: P(Y=1|X=x) = P(Y=0|X=x)
• By Bayes theorem, equivalent to x: 

If class distribution is P(Y=1) = Ber(q) and
class conditional feature distribution P(X=x|Y=y) is 2-dim    
Gaussian N(μy,Σy)

Decision Boundary of Gaussian Bayes

Lets find the decision boundary.

T
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• Decision boundary is set of points x: P(Y=1|X=x) = P(Y=0|X=x)

Compute the ratio

Decision Boundary of Gaussian Bayes

P (Y = 1|X = x)

P (Y = 0|X = x)
=

P (X = x|Y = 1)P (Y = 1)

P (X = x|Y = 0)P (Y = 0)
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In general, this implies a quadratic equation in x. But if Σ1= Σ0, then 
quadratic part cancels out and decision boundary is linear.
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Glossary of Machine Learning
• Feature/Attribute
• iid
• Bayes classifier
• Class distribution
• Class conditional 

distribution of features
• Estimator – hat notation
• MLE
• Decision boundary
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Some notes

• Recitation Friday Sept 18
Recap of MLE/MAP hands on
Naïve Bayes application
Linear algebra and multi-variate calculus

• HW1 due date -> Sept 25
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Multi-class, multi-dimensional 
classification – Continuous features

High Stress

Moderate Stress

Low Stress

Input feature vector, X Label, Y

We started with a simple case: 

label Y is binary (either “Stress” or “No Stress”)

X is average brain activity in the “Amygdala”

In general: label Y can belong to K>2 classes

X is multi-dimensional d>1 (average activity in all brain regions)



How many parameters do we need to 

learn (continuous features)?
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Kd + Kd(d+1)/2 = O(Kd2) if d features

Quadratic in dimension d!  If d = 256x256 

pixels, ~ 13 billion parameters!

Class probability:

P(Y = y) = py for all y in H, M, L pH, pM, pL (sum to 1)

Class conditional distribution of features:

P(X=x|Y = y) ~ N(μy,Σy) for each y   μy – d-dim vector

Σy - dxd matrix

K-1 if K labels



Multi-class, multi-dimensional 
classification - Discrete features

“0”
“1”
…
“9”

Input feature vector, X Label, Y

Sports
Science
News

Input feature vector, X Label, Y



How many parameters do we need to 
learn (discrete features)?
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Class probability:

P(Y = y) = py for all y in 0, 1, 2, …, 9 p0, p1, …, p9 (sum to 1)

Class conditional distribution of (binary) features:

P(X=x|Y = y) ~ For each label y, maintain probability table with 
2d-1 entries 

K-1 if K labels

K(2d – 1) if d binary features

Exponential in dimension d!



What’s wrong with too many 
parameters?

• How many training data needed to learn one parameter (bias 
of a coin)?

• Need lots of training data to learn the parameters! 
– Training data > number of (independent) parameters
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Naïve Bayes Classifier

12

• Bayes Classifier with additional “naïve” assumption:
– Features are independent given class:

– More generally:

• If conditional independence assumption holds, NB is 
optimal classifier! But worse otherwise.
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
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Conditional Independence
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• X is conditionally independent of Y given Z:
probability distribution governing X is independent of the value 
of Y, given the value of Z

• Equivalent to:

• e.g.,
Note: does NOT mean Thunder is independent of Rain



Conditional vs. Marginal Independence
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Wearing coats is independent of accidents conditioning on 
the fact that it rained



Naïve Bayes Classifier
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• Bayes Classifier with additional “naïve” assumption:
– Features are independent given class:

• How many parameters now?



How many parameters do we need to 
learn (continuous features)?
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2Kd if d features

Linear instead of Quadratic in dimension d!  

Class probability:

P(Y = y) = py for all y in H, M, L pH, pM, pL (sum to 1)

Class conditional distribution of features (using Naïve Bayes 
assumption):

P(Xi = xi|Y = y) ~ N(μ(y)
i, σ2

i 
(y)) for each y and each pixel i

K-1 if K labels



How many parameters do we need to 
learn (discrete features)?
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Class probability:

P(Y = y) = py for all y in 0, 1, 2, …, 9 p0, p1, …, p9 (sum to 1)

Class conditional distribution of (binary) features:

P(Xi = xi|Y = y) – one probability value for each y, pixel i

K-1 if K labels

Kd if d binary features

Linear instead of Exponential in dimension d!



Naïve Bayes Classifier
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• Bayes Classifier with additional “naïve” assumption:
– Features are independent given class:

• Has fewer parameters, and hence requires fewer training 
data, even though assumption may be violated in practice



Naïve Bayes Algo – Discrete features
• Training Data
• Maximum Likelihood Estimates
– For Class probability 

– For class conditional distribution

• NB Prediction for test data
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Issues with Naïve Bayes
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• Issue 1: Usually, features are not conditionally independent:

Nonetheless, NB is the single most used classifier particularly    
when data is limited, works well

• Issue 2: Typically use MAP estimates instead of MLE since 
insufficient data may cause MLE to be zero.



Insufficient data for MLE
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• What if you never see a training instance where X1=a when 
Y=b?
– e.g., b={SpamEmail}, a ={‘Earn’}
– !"(X1= a | Y = b) = 0

• Thus, no matter what the values X2,…,Xd take:

• What now???

= 0d



Naïve Bayes Algo – Discrete features

• Training Data

• Maximum A Posteriori (MAP) Estimates – add m “virtual” data

Assume priors 

MAP Estimate

Now, even if you never observe a class/feature posterior 
probability never zero.
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# virtual examples 
with Y = b



Max A Posteriori (MAP) estimation

Justification for adding virtual examples
• Assume a prior (before seeing data D) distribution P(q) for 

parameters q
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• Choose value that maximizes a posterior distribution P(q|D) of 
parameters q



How to choose prior distribution?
• P(q) 
– Prior knowledge about domain e.g. unbiased coin P(q) = 1/2

– A mathematically convenient form e.g. “conjugate” prior
If P(q) is conjugate prior for P(D|q), then Posterior has 
same form as prior 

Posterior  =   Likelihood x Prior
P(q|D)  =      P(D|q)    x  P(q) 

e.g. Beta              Bernoulli     Beta q = bias

Gaussian       Gaussian    Gaussian        q = mean µ
(known S)

inv-Wishart   Gaussian    inv-Wishart   q = cov matrix S
(known µ) 24



MAP estimation for Bernoulli r.v.
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Choose q that maximizes a posterior probability

MAP estimate of probability of head (using Beta conjugate prior):



Beta distribution
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More concentrated as values of bH, bT increase

Beta(2,3) Beta(20,30)


