

Decision Boundary of Gaussian Bayes

- Decision boundary is set of points x: P(Y=1|X=x) = P(Y=0|X=x)
- By Bayes theorem, equivalent to x:

$$(X: p(X=x|Y=1) P(Y=1) = P(X=x|Y=0) P(Y=0))$$

Lets find the decision boundary.

If class distribution is $P(Y=1) = Ber(\theta)$ and class conditional feature distribution P(X=x|Y=y) is **d**-dim Gaussian $N(\mu_y, \Sigma_y)$

$$P(X = x|Y = y) = \frac{1}{\sqrt{(2\pi)^d |\Sigma_y|}} \exp\left(-\frac{(x - \mu_y)^{\mathsf{T}} \Sigma_y^{-1} (x - \mu_y)}{2}\right)$$

Decision Boundary of Gaussian Bayes

Decision boundary is set of points x: P(Y=1|X=x) = P(Y=0|X=x)

Compute the ratio

$$1 = \frac{P(Y = 1|X = x)}{P(Y = 0|X = x)} = \frac{P(X = x|Y = 1)P(Y = 1)}{P(X = x|Y = 0)P(Y = 0)}$$

$$= \sqrt{\frac{|\Sigma_0|}{|\Sigma_1|}} \exp\left(-\frac{(x - \mu_1)\Sigma_1^{-1}(x - \mu_1)}{2} + \frac{(x - \mu_0)\Sigma_0^{-1}(x - \mu_0)}{2}\right)\frac{\theta}{1 - \theta}$$

In general, this implies a quadratic equation in x. But if $\Sigma_1 = \Sigma_0$, then quadratic part cancels out and decision boundary is linear.

Glossary of Machine Learning

- Feature/Attribute
- iid
- Bayes classifier
- Class distribution
- Class conditional distribution of features
- Estimator hat notation
- MLE
- Decision boundary

Some notes

• Recitation Friday Sept 18

Recap of MLE/MAP hands on Naïve Bayes application Linear algebra and multi-variate calculus

• HW1 due date -> Sept 25

Naïve Bayes Learning Distributions (MAP)

Aarti Singh

Machine Learning 10-315 Sept 16, 2020

Multi-class, multi-dimensional classification – Continuous features

Input feature vector, X

High Stress Moderate Stress Low Stress

Label, Y

We started with a simple case:

label Y is binary (either "Stress" or "No Stress") X is average brain activity in the "Amygdala"

In general: label Y can belong to K>2 classes X is multi-dimensional d>1 (average activity in all brain regions)

How many parameters do we need to learn (continuous features)?

Class probability: K=3P(Y = y) = p_y for all y in H, M, L K-1 if K labels

$$p_H, p_M, p_L$$
 (sum to 1)

Class conditional distribution of features:

 $P(X=x|Y=y) \sim N(\mu_y, \Sigma_y)$ for each y

 $\mu_{k-1} - \mu_{k} - kd(\frac{d+1}{2})$ $\Xi_{k-1} - E_{k} - kd(\frac{d+1}{2})$

 μ_y – d-dim vector Σ_y - dxd matrix

 $Kd + Kd(d+1)/2 = O(Kd^2)$ if d features

Quadratic in dimension d! If d = 256x256 pixels, ~ 13 billion parameters!

3×(2562)

Multi-class, multi-dimensional classification - Discrete features "0" "1" ... "**q**" 23456789 Label, Y Input feature vector, X **Sports Science**

News

Input feature vector, X

C.009

Label, Y

How many parameters do we need to learn (discrete features)?

Class probability: K= 40

$$P(Y = y) = p_y \text{ for all y in 0, 1, 2, ..., 9}$$
 $p_0, p_1, ..., p_9 \text{ (sum to 1)}$
K-1 if K labels

Class conditional distribution of (binary) features:

 $P(X=x | Y = y) \sim For each label y, maintain probability table with$ 2^d-1 entries $<math display="block">X \in 2^{d}$ $V \in$

What's wrong with too many parameters?

 How many training data needed to learn one parameter (bias of a coin)?

- Need lots of training data to learn the parameters!
 - Training data > number of (independent) parameters

runtime + storage requirement

Naïve Bayes Classifier

- Bayes Classifier with additional "naïve" assumption:
 - Features are independent given class:

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y) \leftarrow Chain mle$$

= $P(X_1|Y)P(X_2|Y)$

- More generally:

$$P(X_1...X_d|Y) = \prod_{i=1}^d P(X_i|Y) \qquad X = \begin{bmatrix} X_1 \\ X_2 \\ \\ \\ \\ X_d \end{bmatrix}$$

• If conditional independence assumption holds, NB is optimal classifier! But worse otherwise.

 $X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$

Conditional Independence

• X is **conditionally independent** of Y given Z:

probability distribution governing X is independent of the value of Y, given the value of Z

$$(\forall x, y, z) P(X = x | Y = y, Z = z) = P(X = x | Z = z)$$

- Equivalent to: $P(X, Y \mid Z) = P(X \mid Z)P(Y \mid Z)$
- e.g., P(Thunder|Rain, Lightning) = P(Thunder|Lightning)
 Note: does NOT mean Thunder is independent of Rain

Conditional vs. Marginal Independence

London taxi drivers: A survey has pointed out a positive and significant correlation between the number of accidents and wearing coats. They concluded that coats could hinder movements of drivers and be the cause of accidents. A new law was prepared to prohibit drivers from wearing coats when driving.

Finally another study pointed out that people wear coats when it rains...

Wearing coats is independent of accidents conditioning on the fact that it rained

Naïve Bayes Classifier

- Bayes Classifier with additional "naïve" assumption:
 - Features are independent given class:

$$P(X_1...X_d|Y) = \prod_{i=1}^d P(X_i|Y)$$

$$f_{NB}(\mathbf{x}) = \arg \max_{y} P(x_1, \dots, x_d \mid y) P(y)$$
$$= \arg \max_{y} \prod_{i=1}^d P(x_i \mid y) P(y)$$

• How many parameters now?

How many parameters do we need to learn (continuous features)?

Class probability:

 $P(Y = y) = p_y$ for all y in H, M, L K-1 if K labels

$$p_H$$
, p_M , p_L (sum to 1)

Class conditional distribution of features (using Naïve Bayes assumption): $P(X_i = x_i | Y = y) \sim N(\mu^{(y)}_i, \sigma^2_i^{(y)})$ for each y and each pixel i 2Kd if d features Linear instead of Quadratic in dimension d!

How many parameters do we need to learn (discrete features)?

Class probability:

$$P(Y = y) = p_y \text{ for all y in 0, 1, 2, ..., 9}$$
 $p_0, p_1, ..., p_9 \text{ (sum to 1)}$
K-1 if K labels

Class conditional distribution of (binary) features:

 $X = \begin{bmatrix} x_1 - y_1 \{0_1\} \\ \vdots \\ x_n \end{bmatrix}$ Lraj Dixeli P(X=x/Y=y) =P(X1=x1,...Xd=24) $P(X_i = x_i | Y = y)$ – one probability value for each y, pixel i if d binary features Kd Linear instead of Exponential in dimension d!

Naïve Bayes Classifier

- Bayes Classifier with additional "naïve" assumption:
 - Features are independent given class:

$$P(X_1...X_d|Y) = \prod_{i=1}^d P(X_i|Y)$$

$$f_{NB}(\mathbf{x}) = \arg \max_{y} P(x_1, \dots, x_d \mid y) P(y)$$
$$= \arg \max_{y} \prod_{i=1}^d P(x_i \mid y) P(y)$$

• Has fewer parameters, and hence requires fewer training data, even though assumption may be violated in practice

Naïve Bayes Algo – Discrete features

• Training Data $\{(X^{(j)}, Y^{(j)})\}_{j=1}^{n}$

$$X^{(j)} = (X_1^{(j)}, \dots, X_d^{(j)})$$

 \boldsymbol{n}

Maximum Likelihood Estimates

 $\widehat{P}(y) = \frac{\{\#j: Y^{(j)} = y\}}{\{ \texttt{lobel} \ \texttt{J} \}} \leftarrow \frac{\texttt{data with}}{\texttt{lobel} \ \texttt{J}}$ For Class probability

For class conditional distribution

$$\hat{P}(x_i|y) = \frac{\hat{P}(x_i, y)}{\hat{P}(y)} = \frac{\{\#j : X_i^{(j)} = x_i, Y^{(j)} = y\}/\not h}{\{\#j : Y^{(j)} = y\}/\not h} \leftarrow$$

NB Prediction for test data $X = (\dot{x_1}, \dots, \dot{x_d})$

$$Y = \arg \max_{y} \widehat{P}(y) \prod_{i=1}^{d} \frac{\widehat{P}(x_i, y)}{\widehat{P}(y)}$$

Issues with Naïve Bayes

• **Issue 1:** Usually, features are not conditionally independent:

$$P(X_1...X_d|Y) \neq \prod_i P(X_i|Y)$$

Nonetheless, NB is the single most used classifier particularly when data is limited, works well

• <u>Issue 2</u>: Typically use MAP estimates instead of MLE since insufficient data may cause MLE to be zero.

Insufficient data for MLE

What if you never see a training instance where X₁=a when
 Y=b?

Spor - e.g., b={SpamEmail}, a ={'Earn'}
N^d
$$\hat{P}(X_1 = a | Y = b) = 0$$

• Thus, no matter what the values X₂,...,X_d take:

$$\widehat{P}(X_1 = a, X_2 \dots X_d | Y) = \widehat{P}(X_1 = a | Y) \prod_{i=2}^d \widehat{P}(X_i | Y) = \mathbf{0}$$

• What now???

Naïve Bayes Algo – Discrete features

- Training Data $\{(X^{(j)}, Y^{(j)})\}_{j=1}^n$ $X^{(j)} = (X_1^{(j)}, \dots, X_d^{(j)})$
- Maximum A Posteriori (MAP) Estimates add m "virtual" data

now, even if you never observe a class/feature post probability never zero.

Max A Posteriori (MAP) estimation

Justification for adding virtual examples

Assume a prior (before seeing data D) distribution P(θ) for parameters θ X~ Bu(9)

• Choose value that maximizes a posterior distribution P($\theta | D$) of parameters θ $\hat{\theta}_{MAP} = \arg \max_{\theta} P(\theta | D)$

$$\arg \max_{\theta} P(D \mid \theta) P(\theta) = P^{n \theta}$$

How to choose prior distribution?

- Prior knowledge about domain e.g. unbiased coin $P(\theta) = I \theta_{\theta}$
- A mathematically convenient form e.g. "conjugate" prior If P(θ) is conjugate prior for P(D| θ), then Posterior has same form as prior

Posterior \equiv Likelihood x Prior P($\theta | D$) \equiv P(D| θ) x P(θ)

• P(θ)

e.g. Beta Bernoulli Beta θ = bias Gaussian Gaussian Gaussian θ = mean μ (known Σ) (inv-Wishart Gaussian inv-Wishart θ = cov matrix Σ (known μ) 24

MAP estimation for Bernoulli r.v.

Choose θ that maximizes a posterior probability

$$\widehat{\theta}_{MAP} = \arg \max_{\theta} P(\theta \mid D)$$

$$= \arg \max_{\theta} P(D \mid \theta) P(\theta)$$

MAP estimate of probability of head (using Beta conjugate prior):

$$P(\theta) \sim Beta(\beta_H, \beta_T)$$

X~Bu(9)

Beta distribution

0=p(x=H)

