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Decision Boundary of Gaussian Bayes

* Decision boundary is set of points x: P(Y=1|X=x) = P(Y=0|X=x)
* By Bayes theorem, equivalent to x:

<X: 4,)()(:‘%'\,'.: \) P(Yc\) = ?QX:X\\";O) F(\'»zO)/j

.

Lets find the decision boundary.

If class distribution is P(Y=1) = Ber(0) and
class conditional feature distribution P(X=x|Y=y) is d;dim
Gaussian N(p,,Z,)

P(X=alY =p) = __exp (_“” — )Ty (@ — ) )

vV (2m)95y 2




Decision Boundary of Gaussian Bayes

* Decision boundary is set of points x: P(Y=1|X=x) = P(Y=0|X=x)

Compute the ratio _ ‘)(,T'Z\*K\
P =1X=2) PX=2y=1P(Y =1 5 o To X
PY=0X=2) PX=z|]Y =0P(Y =0)
P /"T'/\_'\
[2o] (_ (= p)S (@ — ) | (x—po)Sg " (z — po) ) 4
V1= P 2 > 1— 0

In general, this implies a quadratic equation in x. But if ;= %, then
guadratic part cancels out and decision boundary is linear.



Glossary of Machine Learning

Feature/Attribute
i_i_(_:]_

Bayes classifier
Class distribution

Class conditional
distribution of features

Estimator — hat notation
MLE

Decision boundary



Some notes

* Recitation Friday Sept 18
Recap of MLE/MAP hands on
Naive Bayes application

Linear algebra and multi-variate calculus

* HW1 due date -> Sept 25

/



Naive Bayes
Learning Distributions (MAP)

Aarti Singh

Machine Learning 10-315
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Multi-class, multi-dimensional
classification — Continuous features
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High Stress
> Moderate Stress
Low Stress

Input feature vector, X Label, Y

We started with a simple case:
label Y is binary (either “Stress” or “No Stress”)
X is average brain activity in the “Amygdala”

In general: label Y can belong to K>2 classes
X is multi-dimensional d>1 (average activity in all brain regions)



How many parameters do we need to
learn (continuous features)?

Class probability: K=3
P(Y=y)=p,forallyinH, M, L Pu, Py, PL (SUM to 1)
K-1if K labels

P

.- \
Class conditional distribution of features: /; ' /;:z - KO‘("‘%)

P(X=x|Y =y) ~ N(n,Z,) for each y W, — d-dim vector
- 2, - dxd matrix
2
Kd + Kd(d+1)/2 = O(Kd?) if d features ’“@56“)

Quadratic in dimension d! If d = 256x256
pixels, ~ 13 billion parameters! ’



Multi-class, multi-dimensional
classification - Discrete features
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How many parameters do we need to
learn (discrete features)?

Class probability: K= 40
P(Y=y)=p,forallyinQ,1,2,..,9 Po» P1, -+ Pg (SUM to 1)
K-1 if K labels

Class conditional distribution of (binary) features:

P(X=x|Y =y) ~ For each label y, maintain probability table with
/ ¥ 2d1entries d [
Q,0.—Q X
xe 2 5

0
\ _ -\
["l K(29 - 1) if d binary features ¢ | O

0o~

Exponential in dimension d!



What’s wrong with too many
parameters?

How many training data needed to learn one parameter (bias
of a coin)?

Need lots of training data to learn the parameters!
— Training data > number of (independent) parameters

wl\b'ML + gfomﬁg_, erwk
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Naive Bayes Classifier

* Bayes Classifier with additional “naive” assumption:

— Features are independent given class: X1 ]

X =
Xo
P(X1, XolY) = P(X1|X2, Y)P(X2|Y) & fosin wle

N
= P(X1|Y)P(X2]Y)
CE—
— More generally: X1
d x = | X2
P(X1..X4|Y) = ]| P(X3]Y)
i—1 | A

* If conditional independence assumption holds, NB is
optimal classifier! But worse otherwise.

12




Conditional Independence

* Xis conditionally independent of Y given Z:

probability distribution governing X is independent of the value
of Y, given the value of Z

(Ve,y,2)) P(X =z|Y =y, Z =2) = P(X =z|Z = z)

smEmEE——T 4 EmEmmm———

* Equivalent to:
P(X,Y | 2)=P(X | 2)P(Y | 2)

CEEE— E—————

* e.g., P(Thunder|Rain, Lightning) = P(Thunder|Lightning)
Note: does NOT mean Thunder is independent of Rain
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Conditional vs. Marginal Independence

London taxi drivers: A survey has pointed out a positive and
significant correlation between the number of accidents and wearing
coats. They concluded that coats could hinder movements of drivers and
be the cause of accidents. A new law was prepared to prohibit drivers

from wearing coats when driving.

Finally another study pointed out that people wear coats when it rains...

Wearing coats is independent of accidents conditioning on
the fact that it rained

14



Naive Bayes Classifier

Bayes Classifier with additional “naive” assumption:
— Features are independent given class:

d
P(X1..X4|Y) = || P(X3]Y)
i=1
fyp(x) = argmax P(z1,...,2q|y)P(y)
d
= argmax 1] P(zly)P(y)
1=1

How many parameters now?
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How many parameters do we need to
learn (continuous features)?

Class probability:

P(Y=y)=p,forallyinH, M, L Pu, Py, PL (SUM to 1)
K-1if K labels
Class conditional distribution of features (using Naive Bayes<}
i) o (s, 8O
assumption): f__ .
—m— - . - Olu‘o!'
P(X; =x.|Y =y) ~ N(u),, a2 V) for each y and each pixel i
e - am - d‘H)
2Kd  if d features Kol + Ko.((i’

Linear instead of Quadratic in dimension d!
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How many parameters do we need to
learn (discrete features)?

Class probability:

P(Y=y)=p,forallyinQ,1,2,..,9 Po» P1, -+ Pg (SUM to 1)
K-1 if K labels
Y" X\ {ol‘}
Class conditional distribution of (binary) features: - [ ?-'(4T

afe—

P(X; = x;|Y = y) — one probability value for each y, pixel i p( 7(,7<|‘195)

S e Foe)

Kd if d binary features
\ley)

Linear instead of Exponential in dimension d!

17



Naive Bayes Classifier

Bayes Classifier with additional “naive” assumption:
— Features are independent given class:

d
P(X1..X4|Y) = || P(X3]Y)
i=1
fvp(x) = argmax P(z1,...,2q|y)P(y)
d
= argmax 1] P(zly)P(y)
1=1

Has fewer parameters, and hence requires fewer training
data, even though assumption may be violated in practice

18



Naive Bayes Algo — Discrete features

* Training Data {(X(j),Y(j))}?zl x@0) = x\W) . ,Xc(lj))
e Maximum Likelihood Estimates T .w‘
— For Class probability - v () dots
_ #5:YU) =y} <
By = (# . Y bt

— For class conditional distribution

Pluly) . Plosn) _ (#i: XD =2,y D) = yyp <
— P(y) {#j:YU) =yH/7

* NB Prediction for test data X = (z1,...,2q)

P(mzay>
Y = P
arg max (y )7,1;[1 By) )




Issues with Naive Bayes

* Issue 1: Usually, features are not conditionally independent:

P(X1...X4]Y) # [[ P(X|Y)

Nonetheless, NB is the single most used classifier particularly

when data is limited, works well

e Issue 2: Typically useestimates instead of MLE since
insufficient data may cause MLE to be zero.

20



Insufficient data for MLE

* What if you never see a training instance where X;=a when
Y b?

QYW — e.g., b={SpamEmail}, a ={’Earn’}
J“ _ Dy - —h) — -
N P(X;=a|Y=b)=

* Thus, no matter what the values X,,..., X, take:

P(X1 = a, Xo..Xg|Y) = P(X1 = a|Y) H P(X;|Y)=0

e What now???
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Naive Bayes Algo — Discrete features

* Training Data {(X(j)vy(j))}?zl x0) = (X(j),---,XC(Zj))

e Maximum A Posteriori (MAP) Estimates —add m “virtual” data

Assume priors Spom Eprn Spom
QY =1b) Q(X;=a,Y =)
I

147 XD = a,vy®) = b} + mQ(X; = a,Y = b)
o {#] -y () = b} + mQ(Y = b)
W

P(X; =aly =b) =

T
# virtual examples

withY=Db
Now, even if you never observe a class/feature posterior
probability never zero.
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Max A Posteriori (MAP) estimation

Justification for adding virtual examples

 Assume a prior (before seeing data D) distribution P(G) for
arameters 0 ~ Bu (0
P X Ka/t

FOSM o
Before data After data

/\ -

50-50 6

\ P(0)

P(6|D)

[ Y
Oprap O
==

* Choose value that maximizes a posterior distribution P(0|D) of

parameters 0 Orjap = arg max P | D)

————— ulag

= argmax P(D | H)P(H)K
0 PO ——eems



How to choose prior distribution?

* P(9) A

— Prior knowledge about domain e.g. unbiased coin P(0) =%

— A mathematically convenient form e.g. “conjugate” prior

If P(0) is conjugate prior for P(D|0), thenPosterior has
same form as prior

Posterior = Likelihood x Prior
P(6|D) = P(D|B) x P(B)

—

e.g. [ Beta Bernoulli Beta 0 = bias
— 4 — i
Gaussian Gaussian Gaussian 0 = mean L
(known X)
[ inv-Wishart Gaussian inv-Wishart 0 = cov matrix 2

e— oEEnm——

(known u) 2



MAP estimation for Bernoulli r.v.

Choose 0 that maximizes a posterior probability !é “\\:))Bu“‘f)
) |
0 = argmax P(0|D
MAP g ms (6| D) Ty

argmax P(D | 8)P(6
gmax P(DOPW)
MAP estimate of probability of head (using Beta conjugate prior):

P(0) ~ Beta(By, @__T)
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Beta distribution
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