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Logistic Regression
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Assumes functional form for P(Y|X):

Logistic function
(or Sigmoid):
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Implies linear decision boundary

How to learn the parameters w0, w1, … wd? (d features)
Maximum (Conditional) Likelihood Estimates

Maximum (Conditional) A Posterior Estimates

M(C)AP P(w)



Gradient Ascent for M(C)LE
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Gradient ascent rule for w0:



Gradient Ascent for M(C)LE
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Gradient ascent rule for w0:
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Gradient Ascent for M(C)LE 
Logistic Regression
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• Gradient ascent is simplest of optimization approaches
– e.g., Newton method, Conjugate gradient ascent, IRLS (see Bishop 4.3.3)

Gradient ascent algorithm: iterate until change < e

For i=1,…,d, 

repeat   Predict what current weight
thinks label Y should be



M(C)AP – Gradient

• Gradient
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Zero-mean Gaussian prior

Same as before

Extra term Penalizes large weights

Penalization = Regularization



M(C)LE vs. M(C)AP
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• Maximum conditional likelihood estimate

• Maximum conditional a posteriori estimate



Logistic Regression for more than 2 
classes
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• Logistic regression in more general case, where Y {y1,…,yK}

for k<K

for k=K (normalization, so no weights for this class)

Predict

Is the decision boundary still linear?
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