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Discriminative Classifiers

Bayes Classifier:
f*(z) = arg max P(Y =y|X =x)
=y

= argmax P(X =z|Y =y)P(Y =y)
=y

Why not learn P(Y | X) directly? Or better yet, why not learn the
decision boundary directly?

* Assume some functional form for P(Y|X) or for the
decision boundary

* Estimate parameters of functional form directly from
training data

Today we will see one such classifier — Logistic Regression



Logistic Regression

Assumes the following functional form for P(Y | X):

1
1+ exp(wo —+ Zz ZUZXZ)

P(Y =0|X) =

Logistic function applied to a linear os)

function of the data L
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Logistic B osl

function 1 >

(or Sigmoid): 1 + exp(—=z)

Features can be discrete or continuous! z



Logistic Regression is a Linear
Classifier!

Assumes the following functional form for P(Y | X):

1
1 —+ exp(wo —+ Zz UJZXZ)

P(Y =0|X) =

I i

Decision boundary: Note - Labels are 0,1

P(Y =0|X) = P(Y =1|X)

= AV o

1
wo+ZwiXi Z 0
i 0

(Linear Decision Boundary)




Logistic Regression is a Linear
Classifier!

Assumes the following functional form for P(Y | X):

1
1 —+ exp(wo —+ Zz wZXZ)

P(Y =0|X)=

exp(wo + >, wi X;)

=X — -
Py =11X) 1+ exp(wo + ), w; X;)




Training Logistic Regression

How to learn the parameters wy, Wy, ... Wy? (d features)
Training Data  {(x(),y@)n_, x0 =W x)
Maximum Likelihood Estimates

n . .
WNLE = arg max 1] P(X(J),Y(J)|w)
j=1

But there is a problem ...

Don’t have a model for P(X) or P(X|Y) — only for P(Y|X)



Training Logistic Regression

How to learn the parameters wy, Wy, ... W4? (d features)
Training Data  {(x),y)}n_, xO0) = (xW . xPy

Maximum (Conditional) Likelihood Estimates

n . .
WNMCOLE = arg max 11 P(Y(3)|X(3),w)
j=1

Discriminative philosophy — Don’t waste effort learning P(X),
focus on P(Y|X) — that’s all that matters for classification!



Expressing Conditional log Likelihood

1
1+ exp(wg + >; w; X;)

exp(wg + >; w; X;)
1 + exp(wo + >°; wi X;)

P(Y =0|X,w) =

P(Y =1 X,w) =

I(w) = In HP(yj|Xj, W)
J



Expressing Conditional log Likelihood

1
1+ exp(wg + >; w; X;)

exp(wg + >; w; X;)
1 + exp(wg + >; w; X;)

P(Y =0|X,w) =

P(Y =1 X,w) =

[(w) In HP(yj|Xj,w)

J

| i a
— Z yj(wO—I—sza:;Z) —ln(l‘l‘exp(wO_l_szx:Z))
J z g

Good news: [(w) is concave function of w !

Bad news: no closed-form solution to maximize /(w)

Good news: can use iterative optimization methods (gradient ascent)



That’s M(C)LE. How about M(C)AP?

p(w|Y,X) o P(Y | X,w)p(w)

Define priors on w

— Common assumption: Normal

_ w2
(w) " 32
. . . ) . W) = e 2k
distribution, zero mean, identity P 1:[ /DT
covariance . .
Zero-mean Gaussian prior
— “Pushes” parameters towards zero
Logistic

function 1
(or Sigmoid): 1 + exp(—=z)

/

logistic (z)

» What happens if we scale z by a large constant? 2
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That’s M(C)LE. How about M(C)AP?

p(w|Y,X) o P(Y | X,w)p(w)

2
1 Y
p(w) = H 62"92
TRV 2T
* M(C)AP estimate ¢

Zero-mean Gaussian prior

n
* __ J | xJ
w* =argmaxin |p(w) H P(y’ | xI,w)

J=1
n . d a2
w*=argmax » InP(y |x),w) - > 5
W = — 2K
=1 1=1
. . . \ l
Still concave objective! !

Penalizes large weights | |,




Iteratively optimizing concave function

* Conditional likelihood for Logistic Regression is concave
« Maximum of a concave function can be reached by

Gradient Ascent Algorithm
Initialize: Pick w at random

Gradient:

l(w) ol(w)  Al(w)

VAR

Vwl(w) = | /

owg Owg

Update rule: / Learning rate, nN>0
Aw = nVwl(w)

WD O 4 9UW) Ol(w)

1
w ow; |,
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Effect of step-size n

[(w) (W)

Large n => Fast convergence but larger residual error
Also possible oscillations

Small n => Slow convergence but small residual error
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Gradient Ascent for M(C)LE

Gradient ascent rule for wy:

. d . d .
[(w) = Z {yj(wo + szaz‘g) —In(1 4 exp(wg + szazg))}

J
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Gradient Ascent for M(C)LE

Gradient ascent rule for wy:

. d . d .
[(w) = Z {yj(wo + szaj‘g) —In(1 4 exp(wg + szazg))}

J

d
ol(w) _ Z [yj B ! — . exp(wo + Z’wzﬂ?Z)]

Owg 1+ exp(wo + 3% wad)
\

N

wi ™ w403l - P =1, w®)]
J
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Gradient Ascent for M(C)LE
Logistic Regression

Gradient ascent algorithm: iterate until change < ¢

wi T wf? + 93l - PO = 1] %, w®))
J

Fori=1,...,d,

wi(t_H) — wz-(t)—l—an;Z[yj—P(Yj =1 |x/,w®))]
] l l

|

Predict what current weight
thinks label Y should be

repeat

* G@Gradient ascent is simplest of optimization approaches
— e.g., Newton method, Conjugate gradient ascent, IRLS (see Bishop 4.3.3)
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M(C)AP — Gradient

 Gradient ;P
_ ",
p(w) = 1:[ KV 2T ¢
o n [p(w) ﬁ P(yj | Xj,W)] Zero-mean Gaussian prior
O 0 n . .
| I P(y’ | xJ
o np(w) + 90" Lljl (v | x ,W)J
) =t

Same as before
L) X

2

Extra term Penalizes large weights
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M(C)LE vs. M(C)AP

e Maximum conditional likelihood estimate

n
e J | ~J
w* = arg maxIn LH1P<y | x ,w)]

wi(t_'_l) < wi(t) —I—Ung[yj —P(Y =1| xJ, w())]
J

 Maximum conditional a posteriori estimate

n
* J | xJ
w" = arg maxIn [p(w) -Hl P(y) | x ,W)]
]:

wi ™ (t)+77{ >+Zazf'[y P<Y=1xj,w<t>>]}
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Logistic Regression for more than 2
classes

Logistic regression in more general case, where Y &lyy,...,Y¢!}

for k<K

d
ex + >M¢ L wp: X
P(Y =yl X) = Paoko ¥ iy WiiXi)

1+ 25 exp(wjo 4+ Ty wyi Xy)

for k=K (normalization, so no weights for this class)

1
1+ Y5 exp(wjo + 24 wjiX;)

P(Y = yg|X) =

Predict f*(z) = arg max P(Y = y|X = x)
=y

Is the decision boundary still linear? .





