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Discriminative Classifiers
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Why not learn P(Y|X) directly? Or better yet, why not learn the 
decision boundary directly?

• Assume some functional form for P(Y|X) or for the 
decision boundary 
• Estimate parameters of functional form directly from 
training data

Today we will see one such classifier – Logistic Regression

Bayes Classifier:



Logistic Regression
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Assumes the following functional form for P(Y|X):

Logistic
function
(or Sigmoid):

Logistic function applied to a linear
function of the data
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Features can be discrete or continuous!

Not really regression



Logistic Regression is a Linear 
Classifier!
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Assumes the following functional form for P(Y|X):

Decision boundary:

(Linear Decision Boundary)
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Note - Labels are 0,1
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Logistic Regression is a Linear 
Classifier!
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Assumes the following functional form for P(Y|X):
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Training Logistic Regression
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How to learn the parameters w0, w1, … wd? (d features)

Training Data

Maximum Likelihood Estimates

But there is a problem … 
Don’t have a model for P(X) or P(X|Y) – only for P(Y|X)



Training Logistic Regression

7

How to learn the parameters w0, w1, … wd? (d features)

Training Data

Maximum (Conditional) Likelihood Estimates

Discriminative philosophy – Don’t waste effort learning P(X), 
focus on P(Y|X) – that’s all that matters for classification!



Expressing Conditional log Likelihood

8



Expressing Conditional log Likelihood
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Good news:  l(w) is concave function of w !

Bad news: no closed-form solution to maximize l(w)

Good news: can use iterative optimization methods (gradient ascent)



That’s M(C)LE. How about M(C)AP?
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• Define priors on w
– Common assumption: Normal 

distribution, zero mean, identity 
covariance

– “Pushes” parameters towards zero
Zero-mean Gaussian prior

Logistic
function
(or Sigmoid):
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Ø What happens if we scale z by a large constant?



That’s M(C)LE. How about M(C)AP?
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• M(C)AP estimate

Still concave objective!

Zero-mean Gaussian prior

Penalizes large weights



Iteratively optimizing concave function
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• Conditional likelihood for Logistic Regression is concave 
• Maximum of a concave function can be reached by 

Gradient Ascent Algorithm

Gradient:

Learning rate, h>0Update rule:

d

l(w)

w

Initialize: Pick w at random



Effect of step-size h
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Large h => Fast convergence but larger residual error
Also possible oscillations

Small h => Slow convergence but small residual error



Gradient Ascent for M(C)LE
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Gradient ascent rule for w0:



Gradient Ascent for M(C)LE
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Gradient ascent rule for w0:
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Gradient Ascent for M(C)LE 
Logistic Regression
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• Gradient ascent is simplest of optimization approaches
– e.g., Newton method, Conjugate gradient ascent, IRLS (see Bishop 4.3.3)

Gradient ascent algorithm: iterate until change < e

For i=1,…,d, 

repeat   Predict what current weight
thinks label Y should be



M(C)AP – Gradient

• Gradient
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Zero-mean Gaussian prior

Same as before

Extra term Penalizes large weights



M(C)LE vs. M(C)AP
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• Maximum conditional likelihood estimate

• Maximum conditional a posteriori estimate



Logistic Regression for more than 2 
classes
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• Logistic regression in more general case, where Y {y1,…,yK}

for k<K

for k=K (normalization, so no weights for this class)

Predict

Is the decision boundary still linear?
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