Learning Distributions Maximum Likelihood Estimate (MLE) Bayes Classifier

Aarti Singh

Machine Learning 10-315 Sept 9, 2020

Logistics

- Anonymous feedback form
- Recitation on Friday Sept 11 MLE/MAP + Optimization methods review and hands-on exercises
- QnA1 due TODAY
- HW1 to be released TODAY

Why is ML not ...

> Interpolation?

- Noise, stochasticity, transfer across domains, ...
- Statistics?
 - care about computationally efficiency (feasible, at least polynomial time in input size but typically much faster)

> Optimization?

Don't know true objective function, only stochastic version computed using data samples

Data mining?

Generalization on new unseen data

> Your question?

Unsupervised Learning

Learning a Distribution

Bias of a coin

Distribution of brain activity under stimuli

Notion of "Features aka Attributes"

Input $X \in \mathcal{X}$

Document/Article

remember to wake up when class ends = wake ends to class remember up when

How to represent inputs mathematically?

- Document vector X > Ideas?
 - list of words (different length for each document)
 - frequency of words (length of each document = size of vocabulary), also known as Bag-of-words approach

Misses out context!!

list of n-grams (n-tuples of words)

Why might this be limited?

Notion of "Features aka Attributes"

Input $X \in \mathcal{X}$

How to represent inputs mathematically?

- Image X = intensity/value at each pixel, fourier transform values, SIFT etc.
- Market information X = daily/monthly? price of share for past 10 years

Distribution of Inputs

Input $X \in \mathcal{X}$

LISTATU 2005

Discrete Probability Distribution P(X) = P(X=x)

e.g. P(head) = $\frac{1}{2}$, P(word x in text) = p_x

Probabilities in a distribution sum to 1

 $\sum_{x} P(X=x) = 1$ $P(tail) = 1 - p(head), \sum_{x} p_{x} = 1$

(a) $P(a \le X \le b) = \int_a^b p(x) dx$

Continuous Probability density p(x) e.g. p(brain activity)

Probability density integrate to 1 $\int p(x)dx = 1$

Distributions in Supervised tasks

Input $X \in \mathcal{X}$

• Distribution learning also arises in supervised learning tasks e.g. classification

P(Y = y)Distribution of class labelsP(X = x | Y = y)Distribution of words in 'news' documents

Distribution of brain activity under 'stress'

Olaf simons'10

P(Y = y | X = x) Distribution of topics given document

Classification

<u>Goal</u>:

Construct **prediction rule** $f : \mathcal{X} \to \mathcal{Y}$

High Stress Moderate Stress Low Stress

Input feature vector, X

Label, Y

In general: label Y can belong to more than two classes X is multi-dimensional (many features represent an input)

But lets start with a simple case:

label Y is binary (either "Stress" or "No Stress")X is average brain activity in the "Amygdala"

Binary Classification

Model X and Y as random variables with joint distribution P_{XY}

Training data ${X_i, Y_i}^n_{i=1} \sim iid$ (independent and identically distributed) samples from P_{XY}

Test data $\{X,Y\}$ ~ iid sample from P_{XY}

Training and test data are independent draws from same distribution

Bayes Classifier

Model X and Y as random variables

For a given X, f(X) = label Y which is more likely

$$f(X) = \arg \max_{Y=y} P(Y = y | X = x)$$

Bayes Rule

Bayes Rule:
$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

 $P(Y = y|X = x) = \frac{P(X = x|Y = y)P(Y = y)}{P(X = x)}$

To see this, recall:

P(X,Y) = P(X | Y) P(Y)P(Y,X) = P(Y | X) P(X)

Bayes Classifier

Bayes Rule:
$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

$$P(Y = y | X = x) = \frac{P(X = x | Y = y)P(Y = y)}{P(X = x)}$$

Bayes classifier:

$$f(X) = \arg \max_{Y=y} P(Y = y | X = x)$$

=
$$\arg \max_{Y=y} P(X = x | Y = y) P(Y = y)$$

Class conditional
Distribution of features
Distribution of features

Bayes Classifier

We can now consider appropriate distribution models for the two terms:

Class distribution P(Y=y)

Class conditional distribution of features P(X=x|Y=y)

Modeling class distribution

Modeling Class distribution $P(Y=y) = Bernoulli(\theta)$

 $P(Y = \bullet) = \theta \qquad P(Y = \bullet) = 1 - \theta$

Like a coin flip

How to learn parameters from data? MLE

(Discrete case)

Learning parameters in distributions $P(Y = \bullet) = \theta$ $P(Y = \bullet) = 1 - \theta$

Learning θ is equivalent to learning probability of head in coin flip.

> How do you learn that?

Answer: 3/5

Bernoulli distribution

- P(Heads) = θ , P(Tails) = 1- θ
- Flips are **i.i.d.**:
 - Independent events
 - Identically distributed according to Bernoulli distribution

<u>Choose θ that maximizes the probability of observed data aka Likelihood</u>

Choose $\boldsymbol{\theta}$ that maximizes the probability of observed data (aka likelihood)

$$\widehat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta)$$

MLE of probability of head:

$$\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T} = 3/5$$

"Frequency of heads"

Short detour - Optimization

- Optimization objective J(θ)
- Minimum value $J^* = \min_{\theta} J(\theta)$
- Minima (points at which minimum value is achieved) may not be unique

• If function is strictly convex, then minimum is unique

Convex functions

A function J(θ) is called **convex** if the line joining two points J(θ_1),J(θ_2) on the function does not go below the function on the interval [θ_1 , θ_2]

(Strictly) Convex functions have a unique minimum!

Neither

Convex but not strictly convex²¹

Optimizing convex (concave) functions

• Derivative of a function

- Partial derivative
- Derivative is zero at minimum of a convex function

Second derivative is positive at minimum of a convex function

Optimizing convex (concave) functions

➤ What about

concave functions?

non-convex/non-concave functions?

functions that are not differentiable?

optimizing a function over a bounded domain aka constrained optimization?

Choose $\boldsymbol{\theta}$ that maximizes the probability of observed data (aka likelihood)

$$\widehat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta)$$

MLE of probability of head:

$$\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T} = 3/5$$

"Frequency of heads"

Derivation

$\hat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta)$

Derivation

$\hat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta)$

Modeling class distribution

• High Stress

- Moderate Stress
- Low Stress

• Test subject

> How do we model multiple (>2) classes?

Modeling Class distribution $P(Y) = Multinomial(p_H, p_M, p_L)$

$$P(Y = \bullet) = p_H P(Y = \bullet) = p_M P(Y = \bullet) = p_L$$

Like a dice roll

Multinomial distribution

Data, D = rolls of a dice

- $P(1) = p_1$, $P(2) = p_2$, ..., $P(6) = p_6$ $p_1 + ... + p_6 = 1$
- Rolls are **i.i.d.**:
 - Independent events
 - Identically distributed according to Multinomial(θ) distribution where

$$\theta = \{ p_1, p_2, \dots, p_6 \}$$

<u>Choose θ that maximizes the probability of observed data aka "Likelihood"</u>

Choose $\boldsymbol{\theta}$ that maximizes the probability of observed data

$$\widehat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta)$$

MLE of probability of rolls:

$$\hat{\theta}_{MLE} = \hat{p}_{1,MLE}, \dots, \hat{p}_{6,MLE}$$

$$\hat{p}_{y,MLE} = \frac{\alpha_y \leftarrow}{\sum_y \alpha_y} \text{ Rolls that turn up y}$$

$$\sum_y \alpha_y \leftarrow \text{ Total number of rolls}$$
"Frequency of roll y"

Bayes Classifier

We can now consider appropriate distribution models for the two terms:

Class distribution P(Y=y)

Class conditional distribution of features P(X=x|Y=y)

Modeling class conditional distribution of feature P(X=x|Y=y)
What distribution would you use?

1-dim Gaussian distribution

X is Gaussian N(μ , σ^2)

$$P(X = x | \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Why Gaussian?

- Properties
 - Fully Specified by first and second order statistics
 - Uncorrelated ⇔ Independence
 - X, Y Gaussian => aX+bY Gaussian
 - <u>Central limit theorem</u>: if X_1 , ..., X_n are any iid random variables with mean μ and variance $\sigma^2 < \infty$ then

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(X_i-\mu) \sim N(0,\sigma^2)$$

d-dim Gaussian distribution

X is Gaussian N(μ , Σ) μ is d-dim vector, Σ is dxd dim matrix

$$P(X = x | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right),$$

 $\begin{array}{c} X_{2} \\ d=2 \\ X = [X_{1}; X_{2}] \end{array}$

How to learn parameters from data? MLE

(Continuous case)

Gaussian distribution

How many hours did you sleep last night?

- Parameters: μ mean, σ^2 variance
- Sleep hrs are **i.i.d.**:
 - Independent events
 - Identically distributed according to Gaussian distribution

Choose $\theta = (\mu, \sigma^2)$ that maximizes the probability of observed data

$$\widehat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta)$$
$$= \arg \max_{\theta} \prod_{i=1}^{n} P(X_i \mid \theta) \quad \text{Independent draws}$$

Choose $\theta = (\mu, \sigma^2)$ that maximizes the probability of observed data

$$\begin{split} \widehat{\theta}_{MLE} &= \arg \max_{\theta} P(D \mid \theta) \\ &= \arg \max_{\theta} \prod_{i=1}^{n} P(X_i | \theta) \quad \text{Independent draws} \\ &= \arg \max_{\theta} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(X_i - \mu)^2/2\sigma^2} \quad \begin{array}{l} \text{Identically} \\ \text{distributed} \end{array} \end{split}$$

Choose $\theta = (\mu, \sigma^2)$ that maximizes the probability of observed data

 $\hat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta)$ $= \arg \max_{\theta} \prod_{i=1} P(X_i | \theta) \qquad \text{Independent draws}$ Identically $= \arg \max_{\theta} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(X_i - \mu)^2/2\sigma^2} \qquad \text{Identically} \\ \text{distributed}$ $= \arg \max_{\theta = (\mu, \sigma^2)} \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\sum_{i=1}^n (X_i - \mu)^2 / 2\sigma^2}$

$\widehat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta)$

Groups 1-10: <u>Jamboard 1 10</u> Groups 11-20: <u>Jamboard 11 20</u>

MLE for Gaussian mean and variance

$$\widehat{\mu}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Gaussian Bayes classifier

1-dim Gaussian Bayes classifier

d-dim Gaussian Bayes classifier

Decision Boundary of Gaussian Bayes

- Decision boundary is set of points x: P(Y=1|X=x) = P(Y=0|X=x)
- By Bayes theorem, equivalent to x:

Lets find the decision boundary.

If class distribution is $P(Y=1) = Ber(\theta)$ and class conditional feature distribution P(X=x|Y=y) is 2-dim Gaussian $N(\mu_y, \Sigma_y)$

$$P(X = x|Y = y) = \frac{1}{\sqrt{(2\pi)^d |\Sigma_y|}} \exp\left(-\frac{(x - \mu_y)\Sigma_y^{-1}(x - \mu_y)'}{2}\right)$$

46

Decision Boundary of Gaussian Bayes

Decision boundary is set of points x: P(Y=1|X=x) = P(Y=0|X=x)

Compute the ratio

$$1 = \frac{P(Y=1|X=x)}{P(Y=0|X=x)} = \frac{P(X=x|Y=1)P(Y=1)}{P(X=x|Y=0)P(Y=0)}$$
$$= \sqrt{\frac{|\Sigma_0|}{|\Sigma_1|}} \exp\left(-\frac{(x-\mu_1)\Sigma_1^{-1}(x-\mu_1)'}{2} + \frac{(x-\mu_0)\Sigma_0^{-1}(x-\mu_0)'}{2}\right)\frac{\theta}{1-\theta}$$

In general, this implies a quadratic equation in x. But if $\Sigma_1 = \Sigma_0$, then quadratic part cancels out and decision boundary is linear.

d-dim Gaussian Bayes classifier

Glossary of Machine Learning

- Feature/Attribute
- iid
- Bayes classifier
- Class distribution
- Class conditional distribution of features
- Estimator hat notation
- MLE
- Decision boundary