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Logistics

Anonymous feedback form

Recitation on Friday Sept 11 — MLE/MAP + Optimization
methods review and hands-on exercises

QnA1 due TODAY

HW1 to be released TODAY


https://forms.gle/SoeWmoLmbGEpeH998

Why is ML not ...

» Interpolation?
— Noise, stochasticity, transfer across domains, ...

> Statistics?

— care about computationally efficiency (feasible, at least
polynomial time in input size but typically much faster)

» Optimization?

— Don’t know true objective function, only stochastic version
computed using data samples

» Data mining?
— Generalization on new unseen data

» Your question?



Unsupervised Learning

Learning a Distribution
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Notion of “Features aka Attributes”

Input X ¢ X

remember to wake up when class ends

Document/Article =
wake ends to class remember up when

How to represent inputs mathematically?
« Document vector X > ldeas?
— list of words (different length for each document)

— frequency of words (length of each document = size of
vocabulary), also known as Bag-of-words approach 3 Why might

Misses out context!! this be
— list of n-grams (n-tuples of words) limited?
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Notion of “Features aka Attributes”

Input X ¢ X Input X ¢ X

Market information

4
w
)
’/

How to represent inputs mathematically?

* |Image X = intensity/value at each pixel, fourier transform
values, SIFT etc.

* Market information X = daily/monthly? price of share for past
10 years



Distribution of Inputs

Input X ¢ X

W

Discrete Probability Distribution P(X) = P(X=x) ::
e.g. P(head) =%, P(word x in text) =

Probabilities in a distribution sum to 1
> P(X=x)=1 P(tail) =1 —p(head), >, p, =

Continuous Probability density p(x)  P(a<=X<=b) =ff p(x)dx
e.g. p(brain activity)

Probability density integrate to 1
[p(x)dx =1




Distributions in Supervised tasks

Input X ¢ X

* Distribution learning also arises in supervised learning tasks
e.g. classification
P(Y=y) Distribution of class labels
P(X =x |Y =vy) Distribution of words in ‘news’ documents
Distribution of brain activity under ‘stress’

The 16th- and 17th-century English and German
press output compared

Olaf simons’10

P(Y =y|X =x) Distribution of topics given document ;



Classification

Goal: Construct prediction rule f : X — )Y

High Stress
i Moderate Stress
Low Stress

Input feature vector, X Label, Y

In general: label Y can belong to more than two classes
X is multi-dimensional (many features represent an input)

But lets start with a simple case:
label Y is binary (either “Stress” or “No Stress”)
X is average brain activity in the “Amygdala”



Binary Classification

—9-00-000000-00600 0000 ® Stress
low high
® No Stress
X, average brain activity in “Amygdala”
O Test
f(X : :
(X) subject

Model X and Y as random variables with joint distribution Pyy

Training data {X, Y.}"._; ~iid (independent and identically distributed)
samples from P,y

Test data {X,Y} ~ iid sample from P,y

Training and test data are independent draws from same distribution



Bayes Classifier

e L @ Stress
low high
® No Stress
X, average brain activity in “Amygdala”
Py O Test
fX) ' subject

Model X and Y as random variables

P(Y = +|X) P(Y = «|X)
1

0.5 -------o-mmeeees -

0

For a given X, f(X) = label Y which is more likely

f(X) = arg max P(Y =y|X =)
=y
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Bayes Rule

Bayes Rule: P(Y|X) = P(XIIDS(/))(I;(Y)
P(Y =yX =2) = DE= ﬂ?xzfag(y =Y)

To see this, recall:
P(X,Y) = P(X]Y) P(Y)

P(Y,X) = P(Y]X) P(X)

Thomas Bayes 12



Bayes Classifier

Bayes Rule: P(Y|X) = P(X]LBE;(J;(Y)
PO =i =) = S

Bayes classifier:

f(X) = arg max P(Y = y|X = x)

=y
= argmax P(X =z|Y =y)P(Y =vy)
_yl J\ J
| |
Class conditional Distribution of class

Distribution of features
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Bayes Classifier

e © ® Stress

low high
_ o ® No Stress
X, average brain activity in “Amygdala”

£(X) y O Test

subject

f(X) = arg }rpax P(X =x|Y =y)P(Y =vy)
==y
\ J\ J

| |
Class conditional Class distribution
Distribution of features

We can now consider appropriate distribution models for the two terms:
Class distribution P(Y=y)

Class conditional distribution of features P(X=x|Y=y) y



Modeling class distribution

e L @ Stress
low high
® No Stress
X, average brain activity in “Amygdala”
O Test
f(X R :
(X) subject

Modeling Class distribution P(Y=y) = Bernoulli(0)
P(Y =@)=6 P(Y =@)=1-6

Like a coin flip

15




How to learn parameters from data?
MILE

(Discrete case)
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Learning parameters in distributions
P(Y =@)=06 P(Y =@)=1-6

Learning O is equivalent to learning probability of head in coin flip.

» How do you learn that?

Answer: 3/5

» Why??

17



Bernoulli distribution

 P(Heads) =0, P(Tails)=1-0

* Flips arei.i.d.:
— Independent events
— ldentically distributed according to Bernoulli distribution

Choose O that maximizes the probability of observed data
aka Likelihood

18



Maximum Likelihood Estimation (MLE)

Choose 0 that maximizes the probability of observed data (aka
likelihood)

Ovire = argm@ax P(D | 0)

MLE of probability of head:

apy
apg + ar

OviLE = =3/5

"Frequency of heads”

19



Short detour - Optimization

Optimization objective J(0)
Minimum value J* = ming J(0)

Minima (points at which minimum value is achieved) may

not be unique

If function is strictly convex, then minimum is unique

AV |



Convex functions

J(6) A function J(0) is called convex if

the line joining two points
J(04),J(0,) on the function does
not go below the function on the
interval [0, 0,]

(Strictly) Convex functions
have a unique minimum!

9, 9 6
Both Concave Neither ~ Convex but not
& Convex strictly convex’




Optimizing convex (concave) functions

e Derivative of a function

— Partial derivative
 Derivative is zero at minimum of a convex function

e Second derivative is positive at minimum of a convex
function

22



Optimizing convex (concave) functions

» What about
concave functions?
non-convex/non-concave functions?
functions that are not differentiable?

optimizing a function over a bounded domain aka
constrained optimization?
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Maximum Likelihood Estimation (MLE)

Choose 0 that maximizes the probability of observed data (aka
likelihood)

Ovire = argm@ax P(D | 0)

MLE of probability of head:

apy
apg + ar

OviLE = =3/5

"Frequency of heads”

24



Derivation

é\MLE = argm@ax P(D‘Q)
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Derivation

Ot = argm@ax P(D | 0)
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Modeling class distribution

® High Stress

~9-00-000000-000-10 0000
low high
o @ Low Stress
X, average brain activity in “Amygdala”

f(X) | - O fest

subject

» How do we model multiple (>2) classes?

Modeling Class distribution P(Y) = Multinomial(py,py,p\)
P(Y =@)=py P(Y =0)=pu P(Y =@)=p,

Pyt Put P =1

Like a dice roll '’

27



Multinomial distribution

Data, D = rolls of a dice -~ s

* P(l) = pll P(Z) = p2) seey P(6) = p6 p1+""+p6 =1
 Rolls arei.i.d.:
— Independent events

— ldentically distributed according to Multinomial(0) distribution
where

e — {pla p2a ser ) p6}

Choose O that maximizes the probability of observed data
aka “Likelihood”

28



Maximum Likelihood Estimation (MLE)

Choose 0 that maximizes the probability of observed data

Ovire = argm@ax P(D | 0)

MLE of probability of rolls:
OvireE = P1LMLE,--->D6,MLE

Qyy Rolls that turn up y

Py MLE —
Zy O‘y *— Total number of rolls

"Frequency of roll y* 29



Bayes Classifier

e © ® Stress

low high
_ o ® No Stress
X, average brain activity in “Amygdala”

£(X) y O Test

subject

f(X) = arg }rpax P(X =x|Y =y)P(Y =vy)
==y
\ J\ J

| |
Class conditional Class distribution
Distribution of features

We can now consider appropriate distribution models for the two terms:
Class distribution P(Y=y)

Class conditional distribution of features P(X=x|Y=y) y



Modeling class conditional
distribution of features

e L @ Stress
low high
® No Stress
X, average brain activity in “Amygdala”
O Test
f(X R :
(X) subject

Modeling class conditional distribution of feature P(X=x|Y=y)
» What distribution would you use?

E.g. P(X=x|Y=y) = Gaussian N(u,,0%)

31



1-dim Gaussian distribution

X is Gaussian N(u,0?)

L —(e=p?
P(X =z|u,0) =

- 3sh
- 3}
025F B 25}
= ozl ] 2} H 02
o = 2 =
0.15f G 5 15F
01f B 1+
005 - o5t J k
% 2 4 ' 1 2 3 % = S ' 1

u=0 h - n=0




Why Gaussian?

* Properties

— Fully Specified by first and second order statistics
* Uncorrelated < Independence

— X, Y Gaussian => aX+bY Gaussian

— Central limit theorem: if X, ..., X, are any iid random
variables with mean p and variance 6% < o

then

1
e i=1(X; —u) ~N(0,0%)



d-dim Gaussian distribution

X is Gaussian N(, 2) W is d-dim vector, % is dxd dim matrix
P(X =z|p, %) = 1 exp (—l(x —p) 2 (x - n))
| Vv (2m)4[x] 2 |
X, X
3 =0 2_
=2 |
X = [Xy; X5




How to learn parameters from data?
MILE

(Continuous case)

35



Gaussian distribution

Data, D =
3 4 5 6 7 8 9 Sleep hrs

How many hours did you sleep last night?

> Poll

36



Gaussian distribution

Data, D = O0—0O0—10 000 OO0O0—0O0——=0
3 4 5 6 7 8 9 Sleep hrs

* Parameters: p—mean, 6% - variance
e Sleep hrs arei.i.d.:

— Independent events

— ldentically distributed according to Gaussian distribution

37



Maximum Likelihood Estimation (IMLE)

Choose 0= (1,067%) that maximizes the probability of observed data
Oy = arg max P(D | 9)

n
= arg mgx H P(Xz. |9) Independent draws

=1

38



Maximum Likelihood Estimation (IMLE)

Choose 0= (1,67%) that maximizes the probability of observed data
Orirp = arg max PLE|(8)

mn
= arg mgx H p(Xz. |9) Independent draws
=1

Identically
distributed

1 —(Xi—p)?/20

n
p—
0 - 1V2mo?
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Maximum Likelihood Estimation (IMLE)

Choose 0= (u,06?%) that maximizes the probability of observed data
Oy = arg max P(D | 9)
n
— . Ind dent d
= arg mgxl_JIZP(sz) ndependent draws
=

Identically

. L 2 2
e~ (Xi—n)"/20 distributed

n h
1
= arg max
0 g V2mo?

L S (Xi-w)?/20°
= arg max e =i
P g (‘2m2)n/2 |

7 (6)




Derivation

é\MLE = argm@ax P(D‘Q)

> Breakout

Groups 1-10: Jamboard 1 10
Groups 11-20: Jamboard 11 20



https://jamboard.google.com/d/1suiADMGgrl_SH37YvYmpDXrrzsLdf1NUwgChH-_HT0E/edit?usp=sharing
https://jamboard.google.com/d/10gwefNLhK7rVwRtPFN-szOXl1ihL-P62l4orwJ0DMZk/edit?usp=sharing

MVLE for Gaussian mean and variance

1 mn
AMLE = — 3 @

nNi—1
D 1 & \2
OCMLE — —Z(%—H)

n,—1
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Gaussian Bayes classifier

f(X) = arg gpax P(X =z|Y =y)P(Y =vy)
=y
\ J\ J

| |
How to learn parameters Class conditional Class distribution

0, u, 2, from data?

Distribution of features \

/

Gaussian(p,, Z,) Bernoulli(0)

P(Y = ¢)P(X =z|Y =) P(Y = ¢)P(X = z|Y = o)

43




1-dim Gaussian Bayes classifier

f(X) = arg gpax P(X =z|Y =y)P(Y =vy)

=y
\ J\ )
Class conditional' Clz'ass distribution
Distribution of features
» What decision j \
boundaries can we . .
get in 1-dim? Gaussian(p,, 62,) Bernoulli(6)

P(Y = ¢)P(X =z|Y =) P(Y = ¢)P(X = z|Y = o)

44



d-dim Gaussian Bayes classifier

f(X)= argmax P(X = z|Y = y)P(Y = y)

Y=y
\ J\ J
» What decision Class conditional Class distribution
boundaries can we  Distribution of features
get in d-dim? «
Gaussian(u,,Z,) Bernoulli(0)

A

Decision Boun

> X1




Decision Boundary of Gaussian Bayes

* Decision boundary is set of points x: P(Y=1|X=x) = P(Y=0|X=x)
* By Bayes theorem, equivalent to x:

Lets find the decision boundary.

If class distribution is P(Y=1) = Ber(0) and
class conditional feature distribution P(X=x|Y=y) is 2-dim
Gaussian N(p,,Z,)

P(X=alY =p) = __exp (_“” —H)Ey (e - uy>’)

vV (2m)95y 2




Decision Boundary of Gaussian Bayes

* Decision boundary is set of points x: P(Y=1|X=x) = P(Y=0|X=x)

Compute the ratio

In general, this implies a quadratic equation in x. But if ;= %, then
guadratic part cancels out and decision boundary is linear.
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d-dim Gaussian Bayes classifier

f(X)= argmax P(X = z|Y = y)P(Y = y)

Y=y
\ J\ J
» What decision Class conditional Class distribution
boundaries can we  Distribution of features
get in d-dim? «
Gaussian(u,,Z,) Bernoulli(0)

A

Decision Boun

> X1




Glossary of Machine Learning

Feature/Attribute
iid

Bayes classifier
Class distribution

Class conditional
distribution of features

Estimator — hat notation
MLE

Decision boundary
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