Learning Distributions Maximum Likelihood Estimate (MLE) Bayes Classifier

Aarti Singh

Machine Learning 10-315 Sept 9, 2020

Logistics

- [Anonymous feedback form](https://forms.gle/SoeWmoLmbGEpeH998)
- Recitation on Friday Sept 11 MLE/MAP + Optimization methods review and hands-on exercises
- QnA1 due TODAY
- HW1 to be released TODAY

Why is ML not …

\triangleright Interpolation?

- Noise, stochasticity, transfer across domains, …
- \triangleright Statistics?
	- care about computationally efficiency (feasible, at least polynomial time in input size but typically much faster)

\triangleright Optimization?

– Don't know true objective function, only stochastic version computed using data samples

\triangleright Data mining?

– Generalization on new unseen data

\triangleright Your question?

Unsupervised Learning

Learning a Distribution

Bias of a coin

Distribution of brain activity under stimuli

Notion of "Features aka Attributes"

Input $X \in \mathcal{X}$

remember to wake up when class ends = wake ends to class remember up when

How to represent inputs mathematically?

- Document vector X \triangleright Ideas?
	- list of words (different length for each document)
	- frequency of words (length of each document = size of vocabulary), also known as **Bag-of-words** approach

Misses out context!!

– list of n-grams (n-tuples of words)

5 Why might this be limited?

Notion of "Features aka Attributes"

Input $X \in \mathcal{X}$

How to represent inputs mathematically?

- Image $X =$ intensity/value at each pixel, fourier transform values, SIFT etc.
- Market information X = daily/monthly? price of share for past 10 years

Distribution of Inputs

Input $X \in \mathcal{X}$

Discrete Probability Distribution $P(X) = P(X=x)$

e.g. P(head) = $\frac{1}{2}$, P(word x in text) = p_x

Probabilities in a distribution sum to 1

 $\sum_{x} P(X=x) = 1$ P(tail) = 1 – p(head), $\sum_{x} p_{x} = 1$

Continuous Probability density $p(x)$ e.g. p(brain activity)

Probability density integrate to 1 $\int p(x)dx = 1$

$$
P(a <= X <= b) = \int_a^b p(x) \, dx
$$

Distributions in Supervised tasks

Input $X \in \mathcal{X}$

• Distribution learning also arises in supervised learning tasks e.g. classification

> $P(Y=y)$ Distribution of class labels $P(X = x | Y = y)$ Distribution of words in 'news' documents

> > Distribution of brain activity under 'stress'

Olaf simons'10

 $P(Y = y | X = x)$ Distribution of topics given document

Classification

Goal:

Construct prediction rule $f : \mathcal{X} \rightarrow \mathcal{Y}$

High Stress Moderate Stress Low Stress

Input feature vector, X Label, Y

In general: label Y can belong to more than two classes X is multi-dimensional (many features represent an input)

But lets start with a simple case:

label Y is binary (either "Stress" or "No Stress") X is average brain activity in the "Amygdala"

Binary Classification

Model X and Y as random variables with joint distribution P_{XY}

Training data {X_i, Y_i}ⁿ_{i=1} ~ iid (independent and identically distributed) samples from P_{XY}

Test data $\{X,Y\} \sim$ iid sample from P_{XY}

Training and test data are independent draws from **same** distribution

Bayes Classifier

Model X and Y as random variables

For a given X, $f(X)$ = label Y which is more likely

$$
f(X) = \arg \max_{Y=y} P(Y=y|X=x) \qquad \qquad \text{or} \qquad \qquad
$$

Bayes Rule

Bayes Rule:
$$
P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}
$$

 $P(Y = y|X = x) = \frac{P(X = x|Y = y)P(Y = y)}{P(X = x)}$

To see this, recall:

 $P(X,Y) = P(X|Y) P(Y)$ $P(Y,X) = P(Y|X) P(X)$

Bayes Classifier

Bayes Rule:
$$
P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}
$$

$$
P(Y = y|X = x) = \frac{P(X = x|Y = y)P(Y = y)}{P(X = x)}
$$

Bayes classifier:

$$
f(X) = \arg \max_{Y=y} P(Y = y | X = x)
$$

=
$$
\arg \max_{Y=y} P(X = x | Y = y) P(Y = y)
$$

Class conditional Distribution of class Distribution of class Distribution

Bayes Classifier

We can now consider appropriate distribution models for the two terms:

Class distribution P(Y=y)

Class conditional distribution of features $P(X=x|Y=y)$

Modeling class distribution

Modeling Class distribution $P(Y=y) = Bernoulli(\theta)$

 $P(Y = \bullet) = \theta$ $P(Y = \bullet) = 1 - \theta$

Like a coin flip

How to learn parameters from data? MLE

(Discrete case)

Learning parameters in distributions $P(Y = \bullet) = \theta$ $P(Y = \bullet) = 1 - \theta$

Learning θ is equivalent to learning probability of head in coin flip.

\triangleright How do you learn that?

Answer: 3/5

Bernoulli distribution

- P(Heads) = θ , P(Tails) = 1- θ
- Flips are **i.i.d.**:
	- **Independent** events
	- **Identically distributed** according to Bernoulli distribution

Choose θ that maximizes the probability of observed data aka Likelihood

Choose θ that maximizes the probability of observed data (aka likelihood)

$$
\widehat{\theta}_{MLE} = \arg \max_{\theta} P(D | \theta)
$$

MLE of probability of head:

$$
\widehat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T} = \frac{3}{5}
$$

"Frequency of heads"

Short detour - Optimization

- **Optimization objective J(** θ **)**
- Minimum value $J^* = min_\theta J(\theta)$
- Minima (points at which minimum value is achieved) may not be unique

• If function is strictly convex, then minimum is unique

Convex functions

A function $J(\theta)$ is called **convex** if the line joining two points $J(\theta_1)$, $J(\theta_2)$ on the function does not go below the function on the interval $[\theta_1, \theta_2]$

(Strictly) Convex functions have a unique minimum!

strictly convex $^{\!\!2^{\scriptscriptstyle 1}}$

Neither Convex but not

Optimizing convex (concave) functions

• Derivative of a function

- Partial derivative
- Derivative is zero at minimum of a convex function

• Second derivative is positive at minimum of a convex function

Optimizing convex (concave) functions

 \triangleright What about

concave functions?

non-convex/non-concave functions?

functions that are not differentiable?

optimizing a function over a bounded domain aka constrained optimization?

Choose θ that maximizes the probability of observed data (aka likelihood)

$$
\widehat{\theta}_{MLE} = \arg \max_{\theta} P(D | \theta)
$$

MLE of probability of head:

$$
\widehat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T} = \frac{3}{5}
$$

"Frequency of heads"

Derivation

$\widehat{\theta}_{MLE}$ = arg max $P(D | \theta)$

Derivation

$\widehat{\theta}_{MLE}$ = arg max $P(D | \theta)$

Modeling class distribution

• High Stress

- **Moderate Stress**
- Low Stress

subject

Ø How do we model multiple (>2) classes?

Modeling Class distribution $P(Y) = Multinomial(p_H, p_M, p_L)$

$$
P(Y = \bullet) = p_{H} \quad P(Y = \bullet) = p_{M} \quad P(Y = \bullet) = p_{L}
$$

Like a dice roll

 $p_H + p_M + p_l = 1$

Multinomial distribution

Data, $D =$ rolls of a dice

- $P(1) = p_1$, $P(2) = p_2$, ..., $P(6) = p_6$, $p_1 + ... + p_6 = 1$
- Rolls are **i.i.d.**:
	- **Independent** events
	- $-$ **Identically distributed** according to Multinomial(θ) distribution where

$$
\theta = \{\mathsf{p}_1, \mathsf{p}_2, \dots, \mathsf{p}_6\}
$$

Choose θ that maximizes the probability of observed data aka "Likelihood"

Choose θ that maximizes the probability of observed data

$$
\widehat{\theta}_{MLE} = \arg \max_{\theta} P(D | \theta)
$$

MLE of probability of rolls:

$$
\hat{\theta}_{MLE} = \hat{p}_{1,MLE}, \dots, \hat{p}_{6,MLE}
$$
\n
$$
\hat{p}_{y,MLE} = \frac{\alpha_y}{\sum_y \alpha_y}
$$
\nRolls that turn up y\n
$$
\text{Total number of rolls}
$$
\n"Frequency of roll y"

Bayes Classifier

We can now consider appropriate distribution models for the two terms:

Class distribution P(Y=y)

Class conditional distribution of features $P(X=x | Y=y)$

Modeling class conditional distribution of feature P(X=x|Y=y) \triangleright What distribution would you use?

E.g. $P(X=x | Y=y) =$ Gaussian $N(\mu_y, \sigma_y^2)$ $P(X = x|Y = \bullet)$ σ^2 y $\overline{\mu}_{y}$

1-dim Gaussian distribution

X is Gaussian $N(\mu,\sigma^2)$

$$
P(X = x | \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \frac{-(x-\mu)^2}{e^2}
$$

Why Gaussian?

- Properties
	- Fully Specified by first and second order statistics
		- Uncorrelated \Leftrightarrow Independence
	- X, Y Gaussian => aX+bY Gaussian
	- Central limit theorem: if X_1 , ..., X_n are any iid random variables with mean μ and variance $\sigma^2 < \infty$ then

$$
\frac{1}{\sqrt{n}}\sum_{i=1}^n(X_i-\mu)\sim N(0,\sigma^2)
$$

d-dim Gaussian distribution

X is Gaussian N(μ , Σ)
 μ is d-dim vector, Σ is dxd dim matrix

$$
P(X = x | \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\right),
$$

 X_2 X_2 Σ $\Sigma = \sigma^2$ $d=2$ μ μ $X = [X_1; X_2]$ $\overline{0}$ -2 $\overline{0}$ $\overline{2}$ Λ 6 X_1 X_1

34

How to learn parameters from data? MLE

(Continuous case)

Gaussian distribution

How many hours did you sleep last night?

\triangleright Poll

- Parameters: μ mean, σ^2 variance
- Sleep hrs are **i.i.d.**:
	- **Independent** events
	- **Identically distributed** according to Gaussian distribution

Choose $\theta = (\mu, \sigma^2)$ that maximizes the probability of observed data

$$
\widehat{\theta}_{MLE} = \arg \max_{\theta} P(D | \theta)
$$

=
$$
\arg \max_{\theta} \prod_{i=1}^{n} P(X_i | \theta)
$$
 Independent draws

Choose $\theta = (\mu, \sigma^2)$ that maximizes the probability of observed data

$$
\begin{aligned}\n\hat{\theta}_{MLE} &= \arg \max_{\theta} P(D \mid \theta) \\
&= \arg \max_{\theta} \prod_{i=1}^{n} P(X_i | \theta) \qquad \text{Independent draws} \\
&= \arg \max_{\theta} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(X_i - \mu)^2 / 2\sigma^2} \qquad \text{Identically distributed} \\
\end{aligned}
$$

Choose $\theta = (\mu, \sigma^2)$ that maximizes the probability of observed data

$$
\hat{\theta}_{MLE} = \arg \max_{\theta} P(D | \theta)
$$
\n
$$
= \arg \max_{\theta} \prod_{i=1}^{n} P(X_i | \theta) \qquad \text{Independent draws}
$$
\n
$$
= \arg \max_{\theta} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(X_i - \mu)^2/2\sigma^2} \qquad \text{Identically distributed}
$$
\n
$$
= \arg \max_{\theta = (\mu, \sigma^2)} \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\sum_{i=1}^{n} (X_i - \mu)^2/2\sigma^2}
$$
\n
$$
J(\theta)
$$

Derivation $\widehat{\theta}_{MLE}$ = arg max $P(D | \theta)$

Groups 1-10: **Jamboard 1 10** Groups 11-20: [Jamboard_11_20](https://jamboard.google.com/d/10gwefNLhK7rVwRtPFN-szOXl1ihL-P62l4orwJ0DMZk/edit?usp=sharing)

MLE for Gaussian mean and variance

 \sim

$$
\widehat{\mu}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} x_i
$$

Gaussian Bayes classifier

1-dim Gaussian Bayes classifier

d-dim Gaussian Bayes classifier

Decision Boundary of Gaussian Bayes

- Decision boundary is set of points x: $P(Y=1|X=x) = P(Y=0|X=x)$
- By Bayes theorem, equivalent to x:

Lets find the decision boundary.

If class distribution is $P(Y=1) = Ber(\theta)$ and class conditional feature distribution P(X=x|Y=y) is 2-dim Gaussian $N(\mu_v, \Sigma_v)$

$$
P(X = x|Y = y) = \frac{1}{\sqrt{(2\pi)^d |\Sigma_y|}} \exp\left(-\frac{(x - \mu_y)\Sigma_y^{-1}(x - \mu_y)}{2}\right)
$$

46

Decision Boundary of Gaussian Bayes

• Decision boundary is set of points x: $P(Y=1|X=x) = P(Y=0|X=x)$

Compute the ratio

$$
1 = \frac{P(Y=1|X=x)}{P(Y=0|X=x)} = \frac{P(X=x|Y=1)P(Y=1)}{P(X=x|Y=0)P(Y=0)}
$$

= $\sqrt{\frac{|\Sigma_0|}{|\Sigma_1|}} \exp\left(-\frac{(x-\mu_1)\Sigma_1^{-1}(x-\mu_1)'}{2} + \frac{(x-\mu_0)\Sigma_0^{-1}(x-\mu_0)'}{2}\right) \frac{\theta}{1-\theta}$

In general, this implies a quadratic equation in x. But if $\Sigma_1 = \Sigma_0$, then quadratic part cancels out and decision boundary is linear.

d-dim Gaussian Bayes classifier

Glossary of Machine Learning

- Feature/Attribute
- iid
- Bayes classifier
- Class distribution
- Class conditional distribution of features
- Estimator hat notation
- MLE
- Decision boundary