
Naïve Bayes 
Learning Distributions (MAP)

Aarti Singh

Machine Learning 10-315
Sept 16, 2020



Multi-class, multi-dimensional 
classification – Continuous features

High Stress

Moderate Stress

Low Stress

Input feature vector, X Label, Y

We started with a simple case: 

label Y is binary (either “Stress” or “No Stress”)

X is average brain activity in the “Amygdala”

In general: label Y can belong to K>2 classes

X is multi-dimensional d>1 (average activity in all brain regions)



How many parameters do we need to 

learn (continuous features)?
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Kd + Kd(d+1)/2 = O(Kd2) if d features

Quadratic in dimension d!  If d = 256x256 

pixels, ~ 13 billion parameters!

Class probability:

P(Y = y) = py for all y in H, M, L pH, pM, pL (sum to 1)

Class conditional distribution of features:

P(X=x|Y = y) ~ N(μy,Σy) for each y   μy – d-dim vector
Σy - dxd matrix

K-1 if K labels



Multi-class, multi-dimensional 
classification - Discrete features

“0”
“1”
…
“9”

Input feature vector, X Label, Y

Sports
Science
News

Input feature vector, X Label, Y



How many parameters do we need to 
learn (discrete features)?
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Class probability:

P(Y = y) = py for all y in 0, 1, 2, …, 9 p0, p1, …, p9 (sum to 1)

Class conditional distribution of (binary) features:

P(X=x|Y = y) ~ For each label y, maintain probability table with 
2d-1 entries 

K-1 if K labels

K(2d – 1) if d binary features

Exponential in dimension d!



What’s wrong with too many 
parameters?

• How many training data needed to learn one parameter (bias 
of a coin)?

• Need lots of training data to learn the parameters! 
– Training data > number of (independent) parameters
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Naïve Bayes Classifier
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• Bayes Classifier with additional “naïve” assumption:
– Features are independent given class:

– More generally:

• If conditional independence assumption holds, NB is 
optimal classifier! But worse otherwise.
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Conditional Independence
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• X is conditionally independent of Y given Z:
probability distribution governing X is independent of the value 
of Y, given the value of Z

• Equivalent to:

• e.g.,
Note: does NOT mean Thunder is independent of Rain



Conditional vs. Marginal Independence
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Wearing coats is independent of accidents conditioning on 
the fact that it rained



Naïve Bayes Classifier
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• Bayes Classifier with additional “naïve” assumption:
– Features are independent given class:

• How many parameters now?



How many parameters do we need to 
learn (continuous features)?
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2Kd if d features

Linear instead of Quadratic in dimension d!  

Class probability:

P(Y = y) = py for all y in H, M, L pH, pM, pL (sum to 1)

Class conditional distribution of features (using Naïve Bayes 
assumption):

P(Xi = xi|Y = y) ~ N(μ(y)
i, σ2

i 
(y)) for each y and each pixel i

K-1 if K labels



How many parameters do we need to 
learn (discrete features)?
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Class probability:

P(Y = y) = py for all y in 0, 1, 2, …, 9 p0, p1, …, p9 (sum to 1)

Class conditional distribution of (binary) features:

P(Xi = xi|Y = y) – one probability value for each y, pixel i

K-1 if K labels

Kd if d binary features

Linear instead of Exponential in dimension d!



Naïve Bayes Classifier
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• Bayes Classifier with additional “naïve” assumption:
– Features are independent given class:

• Has fewer parameters, and hence requires fewer training 
data, even though assumption may be violated in practice



Naïve Bayes Algo – Discrete features
• Training Data
• Maximum Likelihood Estimates
– For Class probability 

– For class conditional distribution

• NB Prediction for test data
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Issues with Naïve Bayes

68

• Issue 1: Usually, features are not conditionally independent:

Nonetheless, NB is the single most used classifier particularly    
when data is limited, works well

• Issue 2: Typically use MAP estimates instead of MLE since 
insufficient data may cause MLE to be zero.



Insufficient data for MLE
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• What if you never see a training instance where X1=a when 
Y=b?

– e.g., b={SpamEmail}, a ={‘Earn’}

– !"(X1= a | Y = b) = 0

• Thus, no matter what the values X2,…,Xd take:

• What now???

= 0d



Naïve Bayes Algo – Discrete features

• Training Data

• Maximum A Posteriori (MAP) Estimates – add m “virtual” data

Assume priors 

MAP Estimate

Now, even if you never observe a class/feature posterior 
probability never zero.
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# virtual examples 
with Y = b



Max A Posteriori (MAP) estimation

Justification for adding virtual examples
• Assume a prior (before seeing data D) distribution P(q) for 

parameters q
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• Choose value that maximizes a posterior distribution P(q|D) of 
parameters q



How to choose prior distribution?
• P(q) 
– Prior knowledge about domain e.g. unbiased coin P(q) = 1/2

– A mathematically convenient form e.g. “conjugate” prior
If P(q) is conjugate prior for P(D|q), then Posterior has 
same form as prior 

Posterior  =   Likelihood x Prior
P(q|D) =      P(D|q) x  P(q) 

e.g. Beta              Bernoulli     Beta q = bias

Gaussian       Gaussian    Gaussian q = mean µ
(known S)

inv-Wishart   Gaussian    inv-Wishart   q = cov matrix S
(known µ) 72



MAP estimation for Bernoulli r.v.
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Choose q that maximizes a posterior probability

MAP estimate of probability of head (using Beta conjugate prior):



Beta distribution
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More concentrated as values of bH, bT increase

Beta(2,3) Beta(20,30)



MAP estimation for Bernoulli r.v.
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Choose q that maximizes a posterior probability

MAP estimate of probability of head (using Beta conjugate prior):
Count of H/T simply get 
added to parameters



Beta conjugate prior
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As n = aH + aT increases, posterior distribution becomes more 
concentrated

Beta(2,3) Beta(20,30)

After observing 1 Tail After observing 
18 Heads and 
28 Tails



MAP estimation for Bernoulli r.v.
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Choose q that maximizes a posterior probability

MAP estimate of probability of head:

Equivalent to adding extra coin flips (βH - 1 heads, βT - 1 tails)

Mode of Beta
distribution

As we get more data, effect of prior is “washed out”

Count of H/T simply get 
added to parameters



MLE vs. MAP
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When is MAP same as MLE?

l Maximum Likelihood estimation (MLE)
Choose value that maximizes the probability of observed data

l Maximum a posteriori (MAP) estimation
Choose value that is most probable given observed data and 
prior belief



Back to Naïve Bayes
(continuous features)
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Naïve Bayes with continuous features
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Training Data:

Gaussian Naïve Bayes model:
P(Y = y) = py for all y in 0, 1, 2, …, 9 p0, p1, …, p9 (sum to 1)

P(Xi=xi|Y = y) ~ N(μ(y)
i, σ2

i 
(y)) for each y and each pixel i

High 
stress 

… n scans

… n labels

Input, X

Label, Y

Each input represented as a 
vector of brain activity 
values at the d pixels 
(features)
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Naïve Bayes Algo – continuous features
• Training Data
• Maximum Likelihood Estimates
– For Class probability 

– For class conditional distribution

• NB Prediction for test data
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P̂ (xi|y) = N(µ̂i
(y), �̂i

2(y))

P̂ (xi|y) = N(µ̂i
(y), �̂i

2(y))

MLE estimates
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Maximum likelihood estimates:

jth training imageith pixel in 
jth training image

y class

Naïve Bayes Algo – continuous features
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Parameters q = (μ,σ2)
• Mean μ: Gaussian prior

• Variance σ2: Wishart Distribution

MAP estimation for Gaussian r.v.
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As we get more data, effect of prior is “washed out”

= N(h,l2)



Learned Gaussian Naïve Bayes Model 
Means for P(BrainActivity | WordCategory)
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Animal wordsPeople words
Pairwise classification accuracy: 85% [Mitchell et al.03]




