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Multi-class, multi-dimensional
classification — Continuous features
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We started with a simple case:
label Y is binary (either “Stress” or “No Stress”)
X is average brain activity in the “Amygdala”

In general: label Y can belong to K>2 classes
X is multi-dimensional d>1 (average activity in all brain regions)



How many parameters do we need to
learn (continuous features)?

Class probability:
P(Y=y)=p,forallyinH, M, L Pu, Py, PL (SUM to 1)
K-1if K labels

Class conditional distribution of features:

P(X=x|Y =y) ~ N(n,Z,) for each y W, — d-dim vector
2, - dxd matrix
Kd + Kd(d+1)/2 = O(Kd?) if d features

Quadratic in dimension d! If d = 256x256
pixels, ~ 13 billion parameters! %6



Multi-class, multi-dimensional
classification - Discrete features
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How many parameters do we need to
learn (discrete features)?

Class probability:
P(Y=y)=p,forallyinQ,1,2,..,9 Po» P1, -+ Pg (SUM to 1)
K-1 if K labels

Class conditional distribution of (binary) features:

P(X=x|Y =y) ~ For each label y, maintain probability table with
29-1 entries

K(29 - 1) if d binary features

Exponential in dimension d!

58



What’s wrong with too many
parameters?

How many training data needed to learn one parameter (bias
of a coin)?

Need lots of training data to learn the parameters!
— Training data > number of (independent) parameters
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Naive Bayes Classifier

Bayes Classifier with additional “naive” assumption:

— Features are independent given class:

P(X1,X2|Y) = P(X1|X2,Y)P(X3|Y)
= P(X1]Y)P(X>2|Y)

— More generally:
d X =
P(X1..X4|Y) = ]| P(X3]Y)
i=1

If conditional independence assumption holds, NB is
optimal classifier! But worse otherwise.
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Conditional Independence

* Xis conditionally independent of Y given Z:

probability distribution governing X is independent of the value
of Y, given the value of Z

(Ve,y,2)) P(X =z|Y =y, Z =2) = P(X =z|Z = z)

* Equivalent to:
P(X,Y | 2)=P(X | 2)P(Y | 2)

* e.g., P(Thunder|Rain, Lightning) = P(Thunder|Lightning)
Note: does NOT mean Thunder is independent of Rain
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Conditional vs. Marginal Independence

London taxi drivers: A survey has pointed out a positive and
significant correlation between the number of accidents and wearing
coats. They concluded that coats could hinder movements of drivers and
be the cause of accidents. A new law was prepared to prohibit drivers

from wearing coats when driving.

Finally another study pointed out that people wear coats when it rains...

Wearing coats is independent of accidents conditioning on
the fact that it rained
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Naive Bayes Classifier

Bayes Classifier with additional “naive” assumption:
— Features are independent given class:

d
P(X1..X4|Y) = || P(X3]Y)
i=1
fyp(x) = argmax P(z1,...,2q|y)P(y)
d
= argmax 1] P(zly)P(y)
1=1

How many parameters now?
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How many parameters do we need to
learn (continuous features)?

Class probability:
P(Y=y)=p,forallyinH, M, L Pu, Py, PL (SUM to 1)
K-1if K labels

Class conditional distribution of features (using Naive Bayes
assumption):

P(X; =x.|Y =y) ~ N(u),, a2 V) for each y and each pixel i
2Kd  if d features

Linear instead of Quadratic in dimension d!
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How many parameters do we need to
learn (discrete features)?

Class probability:
P(Y=y)=p,forallyinQ,1,2,..,9 Po» P1, -+ Pg (SUM to 1)
K-1 if K labels

Class conditional distribution of (binary) features:

P(X; = x|Y =y) — one probability value for each vy, pixel i

Kd if d binary features
Linear instead of Exponential in dimension d!
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Naive Bayes Classifier

Bayes Classifier with additional “naive” assumption:
— Features are independent given class:

d
P(X1..X4|Y) = || P(X3]Y)
i=1
fvp(x) = argmax P(z1,...,2q|y)P(y)
d
= argmax 1] P(zly)P(y)
1=1

Has fewer parameters, and hence requires fewer training
data, even though assumption may be violated in practice
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Naive Bayes Algo — Discrete features

* Training Data {(X(j),Y(j))}?zl x@0) = x\W) . ,Xc(lj))

 Maximum Likelihood Estimates
— For Class probability

— For class conditional distribution

Plasy)  {#5: X9 =2, v® = y}/n
P(y) (#j: YD) =y}/n

* NB Prediction fortestdata X = (z1,...,2y4)

d A~
~ P y
Y =argmaxP(y) |] (Am“w




Issues with Naive Bayes

Issue 1: Usually, features are not conditionally independent:

P(X1...X4]Y) # [[ P(X|Y)

Nonetheless, NB is the single most used classifier particularly

when data is limited, works well

Issue 2: Typically use MAP estimates instead of MLE since
insufficient data may cause MLE to be zero.

68



Insufficient data for MLE

What if you never see a training instance where X;=a when
Y=b?

— e.g., b={SpamEmail}, a ={’Earn’}

— P(X;=a|Y=b)=0

Thus, no matter what the values X,,..., X, take:

— ~ d
P(X1 = a, X5..Xg|Y) = P(X1 = a|Y) [[ P(X;]Y)=0
=2

What now???
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Naive Bayes Algo — Discrete features

* Training Data {(X(j)vy(j))}?:1 x0) = (X(j),---,XC(Zj))

e Maximum A Posteriori (MAP) Estimates —add m “virtual” data

Assume priors
QLY =) Q(X; =a,Y =)

(#i: XD =a,v® = b} + mQ(X; = a,Y =b)
{#j:Y0U) =b} 4+ ‘mQ(Y = b)'
# vi'rtual examples
withY=Db
Now, even if you never observe a class/feature posterior
probability never zero.

P(X; =aly =b) =
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Max A Posteriori (MAP) estimation

Justification for adding virtual examples

 Assume a prior (before seeing data D) distribution P(0) for

parameters 0

Before data

P(6)

50-50

/\ =

0

After data

P(6|D)

Orrap O

* Choose value that maximizes a posterior distribution P(0|D) of

parameters® ~

Orrap

arg m@ax P(0| D)

arg m@ax P(D|0)P(0)
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How to choose prior distribution?
* P(6)

— Prior knowledge about domain e.g. unbiased coin P(0) = 1/2

— A mathematically convenient form e.g. “conjugate” prior

If P(O) is conjugate prior for P(D|0), then Posterior has
same form as prior

Posterior = Likelihood x Prior
P(O|D) = P(D|O) x P(0)

e.g. Beta Bernoulli Beta 0 = bias

Gaussian  Gaussian Gaussian 0 =mean
(known X)

inv-Wishart Gaussian inv-Wishart 0 = cov matrix X
(known u) »



MAP estimation for Bernoulli r.v.

Choose 0 that maximizes a posterior probability
Orvjap = arg m@ax P(O| D)
= arg m@ax P(D|60)P(0)
MAP estimate of probability of head (using Beta conjugate prior):
P(9) ~ Beta(By, Br)
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Beta distribution

Beta(Bg, Br)
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MAP estimation for Bernoulli r.v.

Choose 0 that maximizes a posterior probability
Orvjap = arg m@ax P(O| D)
= arg meax P(D|60)P(0)

MAP estimate of probability of head (using Beta conjugate prior):

P(0) ~ Beta(By, B1) Count of H/T simply get
added to parameters

P(0|D) ~ Beta(By + oy, BT + ar)
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Beta conjugate prior

P(0) ~ Beta(Bg, Br) P(0|D) ~ Beta(By + am, fr + ar)
Beta(2,2) Beta(2,3) Beta(20,30)
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MAP estimation for Bernoulli r.v.

Choose 0 that maximizes a posterior probability
Orvjap = arg m@ax P(O| D)
= arg m@ax P(D|60)P(0)

MAP estimate of probability of head:

P(0) ~ Beta(By, B1) Count of H/T simply get
added to parameters

P(0|D) ~ Beta(By + oy, BT + ar)

ag+ 0y —1 Mode of Beta

Equivalent to adding extra coin flips (B, - 1 heads, B - 1 tails)

As we get more data, effect of prior is “washed out”
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MLE vs. MAP

e Maximum Likelihood estimation (MLE)

Choose value that maximizes the probability of observed data

Orir = arg m@ax P(D|0)

e Maximum a posteriori (MAP) estimation

Choose value that is most probable given observed data and
prior belief

Orfap = arg mgx P(6|D)
= arg meax P(D|0)P(0)

When is MAP same as MLE?
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Back to Naive Bayes
(continuous features)
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Naive Bayes with continuous features

Each input represented as a

Training Data: vector of brain activity
values at the d pixels
(features)
- X,
Input, X Y ...nscans X,
| Xd |
Label, Y High Low ... h labels
stress stress
Gaussian Naive Bayes model:
P(Y=y)=p,forallyinQ,1,2,..,9 Po» P1, -+ Pg (SUM to 1)

P(Xi=x;|Y =y) ~ N(uY),, 62, V) for each y and each pixel i
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Naive Bayes Algo — continuous features

* Training Data {(X(j),Y(j))}?zl x@0) = x\W) . ,Xc(lj))

 Maximum Likelihood Estimates
— For Class probability

MLE estimates
* NB Prediction fortestdata X = (z1,...,2y4)

d Ve
Y = arg myaxf’(y) H P(%‘y)
1=1
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Naive Bayes Algo — continuous features

. 0 . N 1
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MAP estimation for Gaussian r.v.

Parameters 0 = (p,0?)
* Mean p: Gaussian prior = N(n,A?)

P A) 1 —(11—2?7)2
: — e 2
Pl W
1l —n n n
MMAP — = rfn 1 A MMLE — EZ xT;
52 1T )2 =1

As we get more data, effect of prior is “washed out”

e Variance o2: Wishart Distribution
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Learned Gaussian Naive Bayes Model
Means for P(BrainActivity | WordCategory)

. . . ) [Mitchell et al.03]
Pairwise cla55|f|cat|on dCCUuracy. 85%

People words 5% s Animal words
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