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What is clustering?

Clustering: the process of grouping a set of objects into classes of similar
objects

— high intra-class similarity
— low inter-class similarity

— It is the most common form of unsupervised learning

Clustering is subjective
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What is Similarity?

Hard to
define! But we
know it when
we see it

The real meaning of similarity is a philosophical question. We will take a
more pragmatic approach - think in terms of a distance (rather than
similarity) between vectors or correlations between random variables.



Distance metrics

X = (X1, X, very Xp)
Y = (Y1, Yar s Yp)

Euclidean distance
Manhattan distance

Sup-distance
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Correlation coefficient

X = (X1, Xa, o) Xp) Random vectors (e.g. expression levels
Y= (Y1 Yo s Vp) of two genes under various drugs)

Pearson correlation coefficient
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Partitioning Algorithms

Partitioning method: Construct a partition of n objects into a
set of K clusters

Given: a set of objects and the number K

Find: a partition of K clusters that optimizes the chosen
partitioning criterion

— Globally optimal: exhaustively enumerate all partitions
— Effective heuristic method: K-means algorithm



K-Means
Algorithm

Input — Desired number of clusters, k

Initialize — the k cluster centers (randomly if necessary)

lterate —

1. Assign points to the nearest cluster centers

2. Re-estimate the k cluster centers (aka the centroid or mean), by assuming
the memberships found above are correct.

Termination —

If none of the objects changed membership in the last iteration, exit.
Otherwise go to 1.



K-means Clustering: Step 1
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K-means Clustering: Step 2
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K-means Clustering: Step 3
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K-means Clustering: Step 4
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K-means Clustering: Step 5
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K-means Recap ...

@ Randomly initialize k centers



K-means Recap ...

@ Randomly initialize k centers
u® =, 0 . O
Iteratet =0, 1, 2, ...

@ Classify: Assign each point je{1,...m} to nearest
center:

CU(j) « arg_min ui” - ;]



K-means Recap ...

@ Randomly initialize k centers
wO =10, 1, O
Iteratet =0, 1, 2, ...
@ Classify: Assign each point je{1,...m} to nearest
center:
CM(j) < arg min ||y

@ Recenter: |, becomes centroid of its points:

(t+1) : 2 -
I < arg min — X ied{l,....k}
0 g p E Iz il

J: M) (j)=i
Equivalent to u; « average of its points!



What is K-means optimizing?

Potential function F(u,C) of centers u and point
allocations C:

F(p,C) =Y llece) — jlI°

=1
- 2

=) > llwi—=ll
1=1;5:C(j)=i

Optimal K-means:
—min,ming F(u,C)



K-means algorithm

@ Optimize potential function:
k

minmin F(p,C) = minmin >~ )~ ||;L2-,—:z:j||2
7 C M cC . . .
i=175:C(5)=1

@ K-means algorithm: (coordinate descent on F)

(1) Fix n, optimize C Expected cluster assighment

(2) Fix C, optimize p Maximum likelihood for center

Soon we will see a generalization of this approach:

EM algorithm



Seed Choice

Results are quite sensitive to seed selection.
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Seed Choice

Results are quite sensitive to seed selection.
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Seed Choice

Results are quite sensitive to seed selection.
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Seed Choice

e Results can vary based on random seed selection.

* Some seeds can result in poor convergence rate, or
convergence to sub-optimal clustering.

— Try out multiple starting points (very important!!!)
— k-means ++ algorithm of Arthur and Vassilvitskii
key idea: choose centers that are far apart

(probability of picking a point as cluster center X
distance from nearest center picked so far)
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Other Issues

e Number of clusters K
— Objective function
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— Look for “Knee” in objective function
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— Can you pick K by minimizing the objective over K?
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Other Issues

e Shape of clusters

— Assumes isotropic, equal variance, convex clusters

e Sensitive to Outliers
— use K-medoids

o K| iR o el




(One) bad case for K-means

e Clusters may overlap
 Some clusters may be “wider” than others
* Clusters may not be linearly separable



(One) bad case for K-means

Clusters may overlap



Partitioning Algorithms

e K-means

— hard assignment: each object belongs to only one
cluster

* Mixture modeling

— soft assignment: probability that an object
belongs to a cluster

Generative approach
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Gaussian Mixture Model

Mixture of K Gaussian distributions: (Multi-modal distribution)

p(x[y=i) ~ N(;, o°I)

p(x) =2 p(x]y=i) Ply=i) \
V V
Mixture Mixture

component proportion




(One) bad case for K-means

Clusters may overlap
Some clusters may be “wider” than others



General GMM

GMM — Gaussian Mixture Model (Multi-modal distribution)

p(x|y=i) ~ N1, )

p(x) = IZ p(x[y=i) P(y=i)

v V

Mixture Mixture
component proportion




General GMM

GMM — Gaussian Mixture Model (Multi-modal distribution)

e There are k components

e Component i has an associated
mean vector y;

e Each component generates data
from a Gaussian with mean z;and
covariance matrix 2;

Each data point is generated according
to the following recipe:

1) Pick a component at random:

Choose component i with
probability P(y=i)

2) Datapoint x ~ N(u;, 2)



(One) bad case for K-means

e Clusters may overlap
 Some clusters may be “wider” than others
* Clusters may not be linearly separable



General GMM

GMM — Gaussian Mixture Model (Multi-modal distribution)

p(x[y=i) ~ N(u;, )
Gaussian Bayes Classifier:

P(y=1[x)
P(y =J[x)
p(x|y=1P(y=1)
p(x|y=pDP(y=))

log

=log

=@

“Quadratic Decision boundary” — second-order terms don’t cancel out

>Depend on g, ty, .., H, 211: 22) s ZK: P(y=1) llll P(sz)



Learning General GMM

k

T1,...,Tm ~ plx) = Zp($\Y =1)P(Y = 1)

i=1 y ¥

Mixture Mixture
component proportion, p;

Gaussian mixture model
p(z|]Y =) ~ N (i, X5)

Parameters: {p,,; s s, Zi }fil

How to estimate parameters? Max Likelihood

But don’t know labels Y (recall Gaussian Bayes classifier) -



Learning General GMM

Maximize marginal likelihood:

argmax | [; P(x;) = argmax |

K .
1 Zi:l P(yj=l,Xj)

= argmax |

[ >0 Ply;=i)p(x | y;=i)

P(y;=i) = P(y=i) Mixture component iis chosen with prob P(y =)

= argmaxﬁzk:P(y =1)

1 1 . -
L& /—det(zi) eXpl:_E(xj _ll’li) Zi(xj :ui):|

How do we find the u;, 2; s and P(y=i)s which give max. marginal

likelihood?

*Set 0 logProb(...)=0 andsolve for u/s. Non-linear not-analytically solvable

O Wi

* Use gradient descent: Doable, but often slow



Expectation-Maximization (EM)

A general algorithm to deal with hidden data, but we will study it in
the context of unsupervised learning (hidden labels)

* No need to choose step size as in Gradient methods.

* EMis an lterative algorithm with two linked steps:
E-step: fill-in hidden data (Y) using inference
M-step: apply standard MLE/MAP method to estimate parameters

{pi, Wi, zi}ki=1

* This procedure monotonically improves the marginal

likelihood (or leaves it unchanged). Thus it always converges
to a local optimum of the likelihood.



EM for spherical, same variance GMMs

E-step
Compute “expected” classes of all datapoints for each class

In K-means "E-step”

: 2jP(y =i)  we do hard assignment
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P(y:i‘xj,ul...uk)oc exp(— ij -

EM does soft assignment
M-step

Compute Max. like p given our data’s class membership distributions (weights)

ZP(y = i‘xj)xj
= Exactly same as MLE with
N Plv—ix weighted data
Sr(-i)

H;

Ilterate.



EM for general GMMs

Iterate. On iteration t let our estimates be p? is shorthand for

[ f P(y=i) on
A={ut w® . w30 3 30 p.t) gt plt estimate o
e ={ 1Y, Uz Hi'™, «1', & k', P17, P2 p } t'th iteration

E-step
Compute “expected” classes of all datapoints for each class

Just evaluate a
(1) (1) Gaussian at x;
Hs2, ) j

P(y = i‘xj,/It)oc pi(t)p(xj

M-step
Compute MLEs given our data’s class membership distributions (weights)

ZP( _"xﬂ t) ZP( _I‘XJ’ t)(x -1 )Xxj_“i(m))T

(t+1 ¥ (t+1)

G 5 ) S o
ZP( _l‘xﬁ t)

(t+1)
: —

m z——m= #data points






