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Dual formulation only depends on 
dot-products, not on w!
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Φ(x) – High-dimensional feature space, but never need it explicitly as long 
as we can compute the dot product fast using some Kernel K



Dot Product of Polynomials
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Common Kernels
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• Polynomials of degree d

• Polynomials of degree up to d

• Gaussian/Radial kernels (polynomials of all orders – recall 
series expansion of exp)

• Sigmoid

Using kernels, cost of 
computing dot products 
depends on dimension of 

original features x, and NOT 
transformed features f(x)



Mercer Kernels
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What functions are valid kernels that correspond to feature 
vectors j(x)?

Answer: Mercer kernels K
• K is continuous 
• K is symmetric
• K is positive semi-definite, i.e.  xTKx ≥ 0 for all x

Ensures optimization is concave maximization



Overfitting
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• Huge feature space with kernels, what about 
overfitting???
– Maximizing margin leads to sparse set of support 

vectors 
– Some interesting theory says that SVMs search for 

simple hypothesis with large margin
– Often robust to overfitting



What about classification time?
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• For a new input x, if we need to represent F(x), we are in trouble!
• Recall classifier: sign(w.F(x)+b)

• Using kernels we are cool!



SVMs with Kernels
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• Choose a set of features and kernel function
• Solve dual problem to obtain support vectors ai

• At classification time, compute:

Classify as



SVMs with Kernels
• Iris dataset, 2 vs 13, Linear Kernel
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SVMs with Kernels
• Iris dataset, 1 vs 23, Polynomial Kernel degree 2
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SVMs with Kernels
• Iris dataset, 1 vs 23, Gaussian RBF kernel
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SVMs with Kernels
• Iris dataset, 1 vs 23, Gaussian RBF kernel
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SVMs with Kernels
• Chessboard dataset, Gaussian RBF kernel
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SVMs with Kernels
• Chessboard dataset, Polynomial kernel

14



USPS Handwritten digits
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SVMs vs. Logistic Regression
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SVMs Logistic
Regression

Loss function Hinge loss Log-loss

0-1 loss

0-1 1

Hinge lossLog loss



SVMs vs. Logistic Regression
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SVMs Logistic
Regression

Loss function Hinge loss Log-loss

High dimensional 
features with 
kernels

Yes! Yes!

Solution sparse Often yes! Almost always no!

Semantics of 
output

“Margin” Real probabilities



Kernels in Logistic Regression
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• Define weights in terms of features:

• Derive simple gradient descent rule on ai



SVMs vs. Logistic Regression
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SVMs Logistic
Regression

Loss function Hinge loss Log-loss

High dimensional 
features with 
kernels

Yes! Yes!

Solution sparse Often yes! Almost always no!

Semantics of 
output

“Margin” Real probabilities



SVMs vs. Logistic Regression
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SVMs Logistic
Regression

Loss function Hinge loss Log-loss

High dimensional 
features with 
kernels

Yes! Yes!

Solution sparse Often yes! Almost always no!

Semantics of 
output

“Margin” Real probabilities



SVMs vs. Logistic Regression
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SVMs Logistic
Regression

Loss function Hinge loss Log-loss

High dimensional 
features with 
kernels

Yes! Yes!

Solution sparse Often yes! Almost always no!

Semantics of 
output

“Margin” Real probabilities
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Can we kernelize linear regression?
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Linear (Ridge) regression

b�MAP = (ATA+ �I)�1ATY

Recall

ATA is a p x p matrix whose entries denote the (sample) 
correlation between the features

NOT inner products between the data points – the inner product 
matrix would be AAT which is n x n (also known as Gram matrix)
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Ridge regression (dual)

• Define weights in terms of features:
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Kernel ridge regression

where

Work with kernels, never need to write out the high-dim vectors

Ridge Regression with (implicit) nonlinear features             !
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Kernel ridge regression vs. 
(local) Kernel Regression

Kernel Ridge Regression (Local) Kernel Regression

Weights depend on test point X

Global fit Local fit

Interpret as 
weighted Nonlinear 
features

Interpret as 
weighted Least 
Squares



What you need to know
• Maximizing margin
• Derivation of SVM formulation
• Slack variables and hinge loss
• Tackling multiple class

– One against All
– Multiclass SVMs

• Dual SVM formulation
– Easier to solve when dimension high d > n
– Kernel Trick

• Relationship between SVMs and logistic regression
• Kernelizing linear regression e.g. Kernel Ridge Regression
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