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Linear Regression
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Linear regression solution satisfies
Normal Equations

(ATA)BE=ATY
pxp pxl p x1

If (ATA) is invertible,

8= ATA)1ATY fl(x)=x8

Predicted labels for training points A3 = Proj, (Y)

Y
Space spanned by data
900 | points (rows of A)
(7 AB = Proj, (Y)

0
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Linear regression solution satisfies
Normal Equations

(ATA)BE=ATY
pxp pxl p x1

If (ATA) is invertible,

8= ATA)1ATY fl(x)=x8

Later: When is (ATA) invertible ?
Recall: Full rank matrices are invertible. What is rank of(ATA) ?

Now: What if (ATA) is invertible but expensive (p very large)?
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Gradient Descent

Even when (ATA) is invertible, might be computationally expensive if A is huge.
~ 1 .
5 =argmin —(A§ - Y)'(AB-Y) =arg min J(8)
n

Since J(B) is convex, move along negative of gradient

Initialize: 30 step size 1Veg |
51 5
UpdatEZ t+1 — t_ g L /8 o , e '
’ SRR t I (T, |
0 if B = g D o e ]

Stop: when some criterion met e.g. fixed # iterations, or 0J(5) <E.

OB |t .



Linear regression solution satisfies
Normal Equations

(ATA)BE=ATY
pxp pxl p x1

Whenis (AT A) invertible ? -
Recall: Full rank matrices are invertible. What is rank of (A~ A)?

Null space argument
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Linear regression solution satisfies

Normal Equations
(ATA)BE=ATY

pxp pxl p x1

Whenis (AT A) invertible ?
Recall: Full rank matrices are invertible. What is rank of(ATA) ?

Rank(ATA) = number of non-zero eigenvalues of (ATA)= number
of non-zero singular values of A <= min(n,p) since Aisnxp

So, rank(ATA), r <= min(n,p) not invertible ifr<p (e.g. n<p
i.e. high-dimensional setting)
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Linear regression solution satisfies
Normal Equations

(ATA)BE=ATY
pxp pxl p x1

Whenis (AT A) invertible ?
Recall: Full rank matrices are invertible. What is rank of (A1 A)?

if A = USV ! then normal equations (SV )3 = (UTY)

S-rxr rxp pxl1 rxl

r equations in p unknowns. Under-determined if r < p, hence no
unique solution.
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Regularized Least Squares

What if (ATA) is not invertible ?

r equations , p unknowns — underdetermined system of linear equations
many feasible solutions

Need to constrain solution further

e.g. bias solution to “small” values of 3 (small changes in input don’t
translate to large changes in output)

. L Ridge Regression
Bmap = arg mﬁln i;(yi — X;8)% 4+ )\|8|3 (12 genal‘rgy)

—argmin (A5 - Y)T(AB - Y) +[5]3 A0

Buiap = (ATA +AI)TTATY
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Regularized Least Squares

Ridge Regression

3 N (V. x3)2 2
ﬁMAP—argmﬁm 'Z(Y} Xi6)° + MB35 (12 penalty)

1 =1

1
=argmin (A5 = Y)T(AS =) + B3 A2 0

s (ATA 4+ )\I) invertible ? .



Understanding regularized Least Squares
min(AS - Y)" (A8 - Y) + Apen(8) = min J(5) + Apen(5)

Ridge Regression:

pen(8) = |16

Bs with constant J(8)
(level sets of J(B))

,82 ’ Unregularized Least Squares solution
A

f3s with constant 12 norm
(level sets of pen(f3))

\/ ’
N |




Regularized Least Squares

What if (ATA) is not invertible ?

r equations , p unknowns — underdetermined system of linear equations
many feasible solutions
Need to constrain solution further

I”

e.g. bias solution to “small” values of 3 (small changes in input don’t
translate to large changes in output)

. L Ridge Regression
Bmap = arg mﬁm Z (Y; — X;8)° + N8I3 (12 genal’rgy)

1—=1
~ n A>0
Buap = arg min SN (Y — X;8)% + A|18ll1 Lasso -
=1 (11 penalty)

Many [3 can be zero — many inputs are irrelevant to prediction in high-
dimensional settings (typically intercept term not penalized) .



Regularized Least Squares

What if (ATA) is not invertible ?

r equations , p unknowns — underdetermined system of linear equations
many feasible solutions
Need to constrain solution further

e.g. bias solution to “small” values of 3 (small changes in input don’t
translate to large changes in output)

~ " Ridge Regression
3 — Mmi Zy._X.32| 3(12 g g

1—=1
~ n A>0
Buap = arg min SN (Y — X;8)% + A|18ll1 Lasso -
i=1 (11 penalty)

No closed form solution, but can optimize using sub-gradient descent (packages
available) 26



Ridge Regression vs Lasso
mﬂin(Aﬁ “Y)T(AB - Y) + Apen(B) = mﬁin J(B) + Apen(B)

Ridge Regression: Lasso: Ideally 10 penalty,

pen(3) = |85 pen(3) = ||8|1 but optimization
becomes non-convex

s with !

Bs with constant J(8)
(level sets of J(B))

Bs with B2 Bs with
constant constant constant
12 norm \[ 11 norm 10 norm
\J . N .

Lasso (11 penalty) results in sparse solutions — vector with more zero coordinates
Good for high-dimensional problems — don’t have to store all coordinates,

interpretable solution! 27



Matlab example

clear all lassoWeights = lasso(X,Y,'Lambda’, 1,

close all 'Alpha’, 1.0);
Ylasso = Xtest*lassoWeights;

n=80; % datapoints norm(Ytest-Ylasso)

p=100; % features

k=10; % non-zero features ridgeWeights = lasso(X,Y,'Lambda’,1,
'Alpha’, 0.0001);

rng(20); Yridge = Xtest*ridgeWeights;

X =randn(n,p); norm(Ytest-Yridge)

weights = zeros(p,1);

weights(1:k) = randn(k,1)+10; stem(lassoWeights)

noise = randn(n,1) * 0.5; pause

Y = X*weights + noise; stem(ridgeWeights)

Xtest = randn(n,p);
noise = randn(n,1) * 0.5;
Ytest = Xtest*weights + noise;



Matlab example

Test MSE = 33.7997

Lasso Coefficients

Test MSE = 185.9948

_ Ridge Coefficients




Least Squares and M(C)LE

Intuition: Signal plus (zero-mean) Noise model

Y =f(X)+e=XB"+¢

e ~N(0,0°I) Y ~ N(XB*,c°I)

BumLe = arg max log p({Yi}i_1|8, 0%, {Xi} 1)
| |

|

Conditional log likelihood
» Breakout Groups 1-10: Jamboard 1 10

n 5 - Groups 11-20: Jamboard_11 20
= argmin Y (XiB-Y) =p
1=1

Least Square Estimate is same as Maximum Conditional
Likelihood Estimate under a Gaussian model ! 30


https://jamboard.google.com/d/1suiADMGgrl_SH37YvYmpDXrrzsLdf1NUwgChH-_HT0E/edit?usp=sharing
https://jamboard.google.com/d/10gwefNLhK7rVwRtPFN-szOXl1ihL-P62l4orwJ0DMZk/edit?usp=sharing

Regularized Least Squares and M(C)AP

What if (ATA) is not invertible ?

Buap = arg maxlog p({Y;}iL, |8, 0%, {X;}[+1og p(6)
\ J J
Y Y
Conditional log likelihood log prior

I) Gaussian Prior

8 ~ N(0, 721) p(B) x e P B/27°

n
Bumap = arg mﬁin Sy = XiB)? + Bl Ridge Regression
i=1
constant(c?, 72)
Baniap = (ATA+A)TIATY
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Regularized Least Squares and M(C)AP

What if (ATA) is not invertible ?

BI\/IAP — arg mﬁax log _‘p({Yi}?:ﬂﬁa 027 {Xq;}‘?’;HOQ p(B)
\ J J

Y Y
Conditional log likelihood log prior

I) Gaussian Prior

8 ~ N(0, 721) p(B) x e P B/27°

n
Bumap = arg mﬁin Sy = XiB)? + Bl Ridge Regression
=1
constant(c?, 72)

Prior belief that B is Gaussian with zero-mean biases solution to “small” 32




Regularized Least Squares and M(C)AP

What if (ATA) is not invertible ?

Bmap = arg max log p({Yi} 1I5, 2 (X" +|09p(6)

Y
Conditional Iog likelihood log prior

Il) Laplace Prior

11d

B; ~ Laplace(0,t) p(B;) e~ 1Gil/t

n
Buar = argmin 3 (¥; - X;3)% + M|Bl1 Lasso
1=1
constant(c?,t)

Prior belief that B is Laplace with zero-mean biases solution to “sparse” 33




Beyond Linear Regression

Polynomial regression
Regression with nonlinear features

Kernelized Ridge Regression (Later)

Local Kernel Regression (Later)
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Polynomial Regression degree i
/

Univariate (1-dim) f(X) = Bg + 51X + 3o X2 + - + B X™ = X3
case:

where X =[1 X X2...X™],8=1[B1...08m]"

3= (ATA) 1ATY or (ATA +AD)'ATY (X)) = X3

1 X X? ... XD
where A = | . :

1 X, X7 ... XM

Multivariate (p-dim) f(X) = g, + B XM 4 B, X3 4o 4 BpX(p)

case: p p o b p -

+ Z Z Bin(Z)X(]) 4+ S: S: S: x @) x () x (k)
i=1 j=1 i=1 j=1 k=1

+...terms up to degree m
35



Polynomial Regression

Polynomial of order k, equivalently of degree up to k-1

k=1

k=3

T
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What is the right order? Recall overfitting!
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Regression with nonlinear features

| ¢o(X)
fF(X) =308 X7 = YT Bj¢;(X) ¢1(X)
S
Weight of Nonlinear

each feature features \/ D> (X)

In general, use any nonlinear features

e.g. eX log X, 1/X, sin(X), ...

3= (ATA)O_rlATY A ¢50(X1) $1(X1) ¢m(EX1)-
(ATA + )\I)_lATY _¢O(Xn) ¢1(Xn) s (bm(Xn)_
fn(X) = X3 X = [po(X) $1(X) ... ¢m(X)] .,






