Non-parametric methods

Aarti Singh

Machine Learning 10-315 Oct 12, 2020

Parametric methods

- Assume some model (Gaussian, Bernoulli, Multinomial, logistic, network of logistic units, Linear, Quadratic) with fixed number of parameters
 - Gaussian Bayes, Naïve Bayes, Logistic Regression, Neural Networks
- Estimate parameters (μ , σ^2 , θ ,w, β) using MLE/MAP and plug in
- **Pro** need few data points to learn parameters
- Con Strong distributional assumptions, not satisfied in practice

Non-Parametric methods

- Typically don't make any distributional assumptions
- As we have more data, we should be able to learn more complex models
- Let number of parameters scale with number of training data
- Some nonparametric methods today (more later)
 Classification: k-NN (k-Nearest Neighbor) classifier
 Density estimation: k-NN, Histogram, Kernel density estimate

Regression: Kernel regression

k-NN classifier

k-NN classifier

k-NN classifier (k=5)

What should we predict? ... Average? Majority? Why?

k-NN classifier

- Optimal Classifier: $f^*(x) = \arg \max_y P(y|x)$ = $\arg \max_y P(x|y)P(y)$
- k-NN Classifier: $\hat{f}_{kNN}(x) = \arg \max_{y} \hat{P}_{kNN}(x|y)\hat{P}(y)$

$$= \arg \max_{y} k_{y}$$

What is the best k?

1-NN classifier decision boundary

Voronoi Diagram

As k increases, boundary becomes smoother (less jagged).

What is the best k?

Approximation vs. Stability (aka Bias vs Variance) Tradeoff

- Larger K => predicted label is more stable
- Smaller K => predicted label can approximate best classifier well given enough data

k-NN density estimation

Not very popular for density estimation – spiked estimates

Histogram density estimate

Partition the feature space into distinct bins with widths Δ_i and count the number of observations, n_i , in each bin.

$$\widehat{p}(x) = \frac{n_i}{n\Delta_i} \mathbf{1}_{x \in \operatorname{Bin}_i}$$

"Local relative frequency"

- Often, the same width is used for all bins, $\Delta_i = \Delta$.
- Δ acts as a smoothing parameter.

Image src: Bishop book

Effect of histogram bin width

$$\widehat{p}(x) = \frac{n_i}{n\Delta} \mathbf{1}_{x \in \operatorname{Bin}_i}$$

Small △, large #bins
Good fit but unstable
(few points per bin)
"Small bias, Large variance"

Large ∆, small #bins Poor fit but stable (many points per bin) "Large bias, Small variance"

Histogram as MLE

 Underlying model – density is constant on each bin Parameters p_j : density in bin j

Note
$$\sum_{j} p_j = 1/\Delta$$
 since $\int p(x)dx = 1$

 Maximize likelihood of data under probability model with parameters p_j

$$\hat{p}(x) = \arg\max_{\{p_j\}} P(X_1, \dots, X_n; \{p_j\}_{j=1}^{1/\Delta})$$
 s.t. $\sum_j p_j = 1/\Delta$

Show that histogram density estimate is MLE under this model

Kernel density estimate

Histogram – blocky estimate

$$\widehat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^{n} \mathbf{1}_{X_j \in \operatorname{Bin}_x}}{n}$$

Kernel density estimate aka "Parzen/moving window method"

$$\widehat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^{n} \mathbf{1}_{||X_j - x|| \le \Delta}}{n}$$

Kernel density estimate

20

Kernels

Any kernel function that satisfies

$$K(x) \ge 0,$$

$$\int K(x)dx = 1$$

Kernel density estimation

- Place small "bumps" at each data point, determined by the kernel function.
- The estimator consists of a (normalized) "sum of bumps".

Gaussian bumps (red) around six data points and their sum (blue)

 Note that where the points are denser the density estimate will have higher values.

Choice of Kernels

Finite support

 only need local points to compute estimate

Infinite support

need all points to compute estimate
But quite popular since smoother

Choice of kernel bandwidth

Histograms vs. Kernel density estimation

25

Nonparametric density estimation

- Histogram $\widehat{p}(x) = \frac{n_i}{n\Delta} \mathbf{1}_{x \in \operatorname{Bin}_i}$
- Kernel density est $\widehat{p}(x) = \frac{n_x}{n\Delta}$

Fix Δ , estimate number of points within Δ of x (n_i or n_x) from data

Fix $n_x = k$, estimate Δ from data (volume of ball around x that contains k training pts)

• k-NN density est $\widehat{p}(x) = \frac{k}{n\Delta_{k,x}}$

Local Kernel Regression

- What is the temperature
 - in the room?

$$\widehat{T} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

Average

at location x?

$$\widehat{T}(x) = \frac{\sum_{i=1}^{n} Y_i \mathbf{1}_{||X_i - x|| \le h}}{\sum_{i=1}^{n} \mathbf{1}_{||X_i - x|| \le h}}$$

"Local" Average

Local Kernel Regression

- Nonparametric estimator
- Nadaraya-Watson Kernel Estimator

$$\widehat{f}_n(X) = \sum_{i=1}^n w_i Y_i$$
 Where $w_i(X) = \frac{K\left(\frac{X-X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X-X_i}{h}\right)}$

- Weight each training point based on distance to test point
- Boxcar kernel yields boxcar kernel : local average $K(x) = \frac{1}{2}I(x),$

Choice of kernel bandwidth h

Image Source: Larry's book – All of Nonparametric Statistics

Kernel Regression as Weighted Least Squares

$$\min_{f} \sum_{i=1}^{n} w_i (f(X_i) - Y_i)^2 \qquad w_i(X) = \frac{K\left(\frac{X - X_i}{h}\right)}{\sum_{i=1}^{n} K\left(\frac{X - X_i}{h}\right)}$$

Weighted Least Squares

Kernel regression corresponds to locally constant estimator obtained from (locally) weighted least squares

i.e. set $f(X_i) = \beta$ (a constant)

Kernel Regression as Weighted Least Squares

set $f(X_i) = \beta$ (a constant)

$$\min_{\beta} \sum_{i=1}^{n} w_i (\beta - Y_i)^2 \qquad \qquad w_i(X) = \frac{K\left(\frac{X - X_i}{h}\right)}{\sum_{i=1}^{n} K\left(\frac{X - X_i}{h}\right)}$$
constant

$$rac{\partial J(eta)}{\partial eta} = 2 \sum_{i=1}^n w_i (eta - Y_i) = 0$$
 Notice that $\sum_{i=1}^n w_i = 1$

$$\Rightarrow \widehat{f}_n(X) = \widehat{\beta} = \sum_{i=1}^n w_i Y_i$$

Local Linear/Polynomial Regression

$$\min_{f} \sum_{i=1}^{n} w_i (f(X_i) - Y_i)^2 \qquad v$$

$$w_i(X) = \frac{K\left(\frac{X-X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X-X_i}{h}\right)}$$

Weighted Least Squares

Local Polynomial regression corresponds to locally polynomial estimator obtained from (locally) weighted least squares

i.e. set
$$f(X_i) = \beta_0 + \beta_1 (X_i - X) + \frac{\beta_2}{2!} (X_i - X)^2 + \dots + \frac{\beta_p}{p!} (X_i - X)^p$$

(local polynomial of degree p around X)

Summary

• Non-parametric approaches

Four things make a nonparametric/memory/instance based/lazy learner:

- 1. A distance metric, dist(x,X_i) Euclidean (and many more)
- How many nearby neighbors/radius to look at?
 k, Δ/h
- 3. A weighting function (optional) W based on kernel K
- *How to fit with the local points?* Average, Majority vote, Weighted average, Poly fit

Summary

- Parametric vs Nonparametric approaches
 - Nonparametric models place very mild assumptions on the data distribution and provide good models for complex data
 - Parametric models rely on very strong (simplistic) distributional assumptions
 - Nonparametric models (not histograms) requires storing and computing with the entire data set.
 Parametric models, once fitted, are much more efficient in terms of storage and computation.