Support Vector Machines
(SVMs)
Recap...

Aarti Singh

Machine Learning 10-315
Oct 26, 2020

ACHI

Hard-margin SVM

Data perfectly separable by a

linear decision boundary min W.w
w,b
Lt _ s.t. (w.x+b)y; 21 V]
- T a
+ == [~]
o
T - Solve using Quadratic
+ T Programming (QP)
gk - - ==
Y

Margin,y o 1/||lw|

Hard margin approach

Soft-margin SVM

Allow “error” in classification

Soft margin approach

min wW.w + CZE
w,b, {§}

s.t. (w.x+b) y; 2 1-§ V|
20 V]

§ - “slack” variables
= (>1 if x; misclassifed)
pay linear penalty if mistake
C - tradeoff parameter (chosen by
cross-validation)

StillQP © ’

Slack variables — Hinge loss
(w.xj+b) y; 2 1-¢; V]

What is the slack §; for the
following points?

Confidence | Slack

Slack variables — Hinge loss

Notice that

§=1—(w-z; +b)y;))+

Hinge loss

Slack variables — Hinge loss

Notice that

§=1—(w-z; +b)y;))+

Hinge loss

0-1 loss AN

0 1
(W -z + b)y;

Regularized Hinge loss

mi? w.w + C Z(1-(w.x+b)y;),
W, J

6

min ww+C2 EJ-
w)b/{aj}

st (wxb)y; 2 15 Vi [pport Vectors

20 V]

/
+ 0<g <1
‘i _

Margin support vectors
=0, (wx+b)y,=1

(don’t contribute to objective
but enforce constraints on
solution)

Correctly classified but on
margin

Non-margin support

vectors

§>0

(contribute to both objective
and constraints)

1>¢ >0 Correctly classified
but inside margin

& > 1 Incorrectly classified

What about multiple classes?

One vs. rest

Learn 3 classifiers
separately:
Class k vs. rest

(W, bk)k=1,2,3

y =arg mzlzx W, .X + b,

But w,s may not be
based on the same scale.
Note: (aw).x + (ab) is also
a solution

Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights

Min qvy (b} 2oy w (%) w(y)

O o
o o o o Margin - gap between correct
O class and nearest other class
% o -
+ =

+ - y = arg max, wk).x + bk

* & * _ -
s

+ = - = 10

Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights

minimize >y w) wl¥) 4 ¢ 25 2yy, §§y) over {wi¥}, {bM} {€¥)}
W(yj).xj + (W) > W(y),Xj 4+ p(W) 41 — gj(,y), Yy # yj, V7

£ >0 Yy #E g, Vi
O o
o o o
© o
(o) © k k
. + = y = arg max wik),x + bk
+ =
+ 4 + = = Joint optimization: w;s
= _ have the same scale.
e
+ + = - 11

12

Support Vector Machines
- Dual formulation

Aarti Singh

Machine Learning 10-315
Oct 26, 2020

ACHI

SVM - linearly separable case

n training points (Xq, o) Xp) + S

d features X; is a d-dimensional vector * y
+ O
+ + 4+
Primal problem: minimize,,, iw.w .. B
(wxj+b)y; > 1, Vj +

w - weights on features (d-dim problem)

Convex quadratic program — quadratic objective, linear
constraints

But expensive to solve if d is very large
Often solved in dual form (n-dim problem)

14

Detour - Constrained Optimization

: 2
MiN,e & *
" = max(b,0
s.t. >0b (6,0)
s.t. > -1 s.t. z>1
—
\ \ \
\ \ ! \
\ / O\ / \
Constraint inactive Constraint active

(tlght) 15

Constrained Optimization

i | - 2
! min
b+vei' ’/ 1 z L
/ s.t. >0
/ | Equivalent unconstrained optimization:
I | min, x%+1(x-b)
x* =b

Replace with lower bound (o >= 0)
x2 + |(x-b) >= x2- a(x-b)

16

Primal and Dual Problems

Notice that

Primal problem: p* = ming 2 = Imin max L(CE, Oé)

s.t. x>0 T a0

wWhy? L(z,a) = 22 — a(z — b)

max L(x,) = 22 — min 04(33 — b) =
a>0 a>0

Dual problem: d* = max, d(a) = Maxq mihiL(aﬁ,a)
s.t. >0 s.t. a>0

17

Constrained Optimization — Dual Problem

—
1
1
35F :
1
1

: b +ve
1
254 :
!
1
2t !
1
. \ ;

\\ 1/

\'\ I//
I /
!

1 1 1 1 : 1

0-2 -15 -1 -05 1] 0s 1 15
*

x* =0>

o = 0 constraint is inactive
o > 0 constraint is active

Primal problem:
Ming T2
s.t. >0

Moving the constraint to objective function
Lagrangian:

L(z,a) = 2% — a(z —b)
s.t. >0

Dual problem:

ming L(x, o
maxq d(a)” " ()

s.t. >0

18

Connection between Primal and Dual

Primal problem: p* = min, 2 Dual problem: d*= max, d(o)
s.t. x>0 s.t. >0
- minmax L(xz, a) = Maxq Ming L(z, o)
xr o>0
- s.t. >0

» Dual problem (maximization) is always concave even if
primal is not convex

Why? Pointwise infimum of concave functions is concave.
[Pointwise supremum of convex functions is convex.]

L(z,a) =22 — a(z —b)

» As many dual variables o as constraints, helpful if fewer
constraints than dimension of primal variable x 19

Connection between Primal and Dual

Primal problem: p* = min, 2 Dual problem: d*= max, d(o)
s.t. x>0 s.t. >0

» Weak duality: The dual solution d* lower bounds the primal
solution p*i.e. d* £ p*

To see this, recall L(z,a) = 22 — a(z — b)
For every feasible x’ (i.e. x’ 2 b) and feasible o’ (i.e. a’ > 0) , notice
that
d(a) = Mming L(x,) £ x2—a’(x'-b) £ x’2
Since above holds true for every feasible x’, we have d(a) < x*? = p*

20

Connection between Primal and Dual

Primal problem: p* = min, 2 Dual problem: d*= max, d(o)
s.t. x>0 s.t. >0

» Weak duality: The dual solution d* lower bounds the primal
solution p*i.e. d* £ p*

» Strong duality: d* = p* holds often for many problems of
interest e.g. if the primal is a feasible convex objective with linear
constraints

21

Connection between Primal and Dual

What does strong duality say about a* (the a that achieved optimal value of
dual) and z* (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT con-
ditions) are true for o* and x*:

e 1. YL(z*,a*) =0 i.e. Gradient of Lagrangian at =* and a* is zero.

o 2. x* >bi.e. x* is primal feasible

o 3. o >01i.e. «aF is dual feasible

e 4. a*(x* —b) =0 (called as complementary slackness)

We use the first one to relate * and a*. We use the last one (complimentary

slackness) to argue that o = 0 if constraint is inactive and a* > 0 if constraint

is active and tight. .

Solving:

Solving the dual

L(xl,)

maxa ming 2 — a(z — b)
s.t. a>0

23

Solving the dual

L(z,)
maxa ming 2 — a(z — b)
s.t. a>0

Solving:

Find the dual: Optimization over x is unconstrained.

2

L . * _ & (3 _)
8—:2:6—05:O:>$’:_ L(QZ’,O&) 4 @ 2 b
Ox 2 5
Q
Solve: Now need to maximize L(x",a) over a = 0
Solve unconstrained problem to get a’ and then take max(a,0)
0 Q ,
—L(z*,a)=——=+b = a =2b
Ja () 2 .
.
= o = max(2b,0) - =5 = max(b,0)

o. = 0 constraint is inactive, a > 0 constraint is active (tight) .

Dual SVM - linearly separable case

n training points, d features (X4, ..., X,,) where x: is a d-dimensional
vector
* Primal problem: minimizey, g, %w.w

(wxj+b)y; > 1, Vj
w - weights on features (d-dim problem)

 Dual problem (derivation):

L(w,b, o) = %W.W — > [(W.Xj + b) Y — 1}
Oéj 2 O, \V/j

o - weights on training pts (n-dim problem)

25

Dual SVM - linearly separable case

* Dual problem:

MaXq MiNy p L(W, b, o) = %W.W — 2. [(W.Xj -+ b) Yj — 1}

Oéj Z 07 \V/]
oL
— 0 W — Zajijj If we can solve for
W F os (dual problem),
, then we have a
L lution f b
oL _ N oo = 0O solution for w,
ab Z Jyj (prlma| pr0b|em)

26

Dual SVM - linearly separable case

* Dual problem:

MaXq MiNy p L(W, b, o) = %W.W — 2. [(W.Xj -+ b) Yj — 1}

OéjZO, V]

=W =) ajy;X; = 2_ajy; =0
j j

27

Dual SVM - linearly separable case

L 1
MaxXimilIZEy ZZ Qa; — 5 Zz,j Q;05YY i X4.X

2.5 iy = O

87 Z O
Dual problem is also QP — Z Y X;
Solution gives as i

What about b?

Dual SVM: Sparsity of dual solution

=0 +

o 3 0

T,

o)

Ik +

>

* s

ocj>0

s

W=) ajyiX;
;

Only few ays can be
non-zero : where
constraint is active and
tight

(w.x; + bly,=1

Support vectors —
training points j whose

oS are non-zero

Dual SVM - linearly separable case

L 1
MaxXimilIZEy ZZ Qa; — 5 Zz,j Q;05YY i X4.X

>0y = 0

87 Z O
Dual problem is also QP W=) yiX;
Solution gives os > i

b=y — W.Xp
Use any one of support vectors with for any k where o, > 0

o, >0 to compute b since constraint is
tight (w.x, + b)y, =1 .

Dual SVM — non-separable case

* Primal problem:

minimizey,) sw.w + C' Y, &;

(wx;+b)y; >1—¢, Vj &
§; 20, Vj Hj
Lagrange
* Dual problem: Multipliers
maxanu minW,b,{Ej} L(W7 b? fa ., /L)
st.a; >0 Vg
pi =0 Vj

HW3

31

Dual SVM — non-separable case

L 1
MaxXimizZeq Zz Q; — 5 Zz,] Q0 5YY XK. X

2. &y; = O
=iz
comes from 8_L — 0 Lntuition: :
O It C->eo, recover hard-margin SVM
Dual problem is also QP W = Z QY X
: : 1
: >
Solution gives as b=y, — W.x,
for any k where C > aj > 0

So why solve the dual SVM?

* There are some quadratic programming algorithms
that can solve the dual faster than the primal,
(specially in high dimensions d>>n)

* But, more importantly, the “kernel trick”!!!

33

