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Hard-margin SVM
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min  w.w
w,b

s.t. (w.xj+b) yj ≥ 1 "j

Data perfectly separable by a
linear decision boundary

Hard margin approach

g
Margin, g ⍺ 1/ǁwǁ

Solve using Quadratic 
Programming (QP)



Soft-margin SVM
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min  w.w + C Σξjw,b,{ξj} 

s.t. (w.xj+b) yj ≥ 1-ξj "j

ξj ≥ 0 "j

j

Allow “error” in classification

ξj - “slack” variables 
= (>1 if xj misclassifed)

pay linear penalty if mistake

C  - tradeoff parameter (chosen by 
cross-validation)

Still QP J

Soft margin approach
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w
.x

+ 
b 

= 
1

w
.x

+ 
b 

= 
-1

Slack variables – Hinge loss

What is the slack ξj for the 
following points?

(w.xj+b) yj ≥ 1-ξj "j

Confidence       |     Slack
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w
.x

+ 
b 

= 
1

w
.x

+ 
b 

= 
-1

Notice that

Slack variables – Hinge loss

0-1 loss
0 1

Hinge loss
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w
.x

+ 
b 

= 
1

w
.x

+ 
b 

= 
-1

Notice that

Slack variables – Hinge loss

Regularized Hinge loss

0-1 loss
0 1

min  w.w + C Σ(1-(w.xj+b)yj)+w,b j

Hinge loss



Support Vectors
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w
.x

+ 
b 

= 
1

w
.x

+ 
b 

= 
-1

Margin support vectors
ξj = 0,  (w.xj+b) yj = 1 
(don’t contribute to objective 
but enforce constraints on 
solution)

Correctly classified but on 
margin

Non-margin support 
vectors
ξj > 0
(contribute to both objective 
and constraints)

1 > ξj > 0 Correctly classified 
but inside margin
ξj > 1 Incorrectly classified

min    w.w + C Σ ξjw,b,{ξj} 
s.t. (w.xj+b) yj ≥ 1-ξj "j

ξj ≥ 0 "j



What about multiple classes?
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One vs. rest
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Learn 3 classifiers 
separately: 
Class k vs. rest

(wk, bk)k=1,2,3

y = arg max wk.x + bk
k

But wks may not be 
based on the same scale.
Note: (aw).x + (ab) is also 
a solution



Learn 1 classifier: Multi-class SVM
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Simultaneously learn 3 sets of weights

y = arg maxk w(k).x + b(k)

Margin - gap between correct 
class and nearest other class

{w(y)}, {b(y)}



Learn 1 classifier: Multi-class SVM
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Simultaneously learn 3 sets of weights

y = arg max w(k).x + b(k)

Joint optimization: wks 
have the same scale.

,{ξj} over {w(y)}, {b(y)} ,{ξj
(y)}
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SVM – linearly separable case

• Convex quadratic program – quadratic objective, linear 
constraints

• But expensive to solve if d is very large
• Often solved in dual form (n-dim problem)
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w – weights on features (d-dim problem)

n training points (x1, …, xn) 
d features xj is a d-dimensional vector 

• Primal problem:

w
.x

+ 
b 

= 
0



Detour - Constrained Optimization
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Constraint inactive Constraint active 
(tight)

x⇤ = max(b, 0)



Constrained Optimization
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b +ve

Equivalent unconstrained optimization:
minx x2 + I(x-b)

Replace with lower bound (a >= 0)
x2 + I(x-b)  >=   x2 - a(x-b)



Primal and Dual Problems
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Primal problem: p* =

Notice that

= min
x

max
↵�0

L(x,↵)

Why?

min
x

max
↵�0

L(x,↵) = x2 �min
↵�0

↵(x� b)

Dual problem: d* = =

=



Constrained Optimization – Dual Problem
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Moving the constraint to objective function
Lagrangian:

Dual problem:

a = 0 constraint is inactive
a > 0  constraint is active

b +ve

Primal problem:



Connection between Primal and Dual
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Primal problem: p* = Dual problem: d* =

Ø Dual problem (maximization) is always concave even if 
primal is not convex 

Ø As many dual variables a as constraints, helpful if fewer 
constraints than dimension of primal variable x

min
x

max
↵�0

L(x,↵) ==

Why?    Pointwise infimum of concave functions is concave.
[Pointwise supremum of convex functions is convex.]



Connection between Primal and Dual
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Primal problem: p* = 

Ø Weak duality: The dual solution d* lower bounds the primal 
solution p* i.e. d* ≤  p*

To see this, recall 

For every feasible x’ (i.e. x’ ≥ b) and feasible α’ (i.e. α’ ≥ 0) , notice    
that

d(α) =                                ≤  x’2 – a’(x’-b) ≤  x’2

Since above holds true for every feasible x’, we have d(α) ≤ x*2 = p*

Dual problem: d* =



Connection between Primal and Dual
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Primal problem: p* = 

Ø Weak duality: The dual solution d* lower bounds the primal 
solution p* i.e. d* ≤  p*

Dual problem: d* =

Ø Strong duality: d* = p* holds often for many problems of 
interest e.g. if the primal is a feasible convex objective with linear 
constraints
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Connection between Primal and Dual
What does strong duality say about ↵⇤ (the ↵ that achieved optimal value of
dual) and x⇤ (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT con-
ditions) are true for ↵⇤ and x⇤:

• 1. 5L(x⇤,↵⇤) = 0 i.e. Gradient of Lagrangian at x⇤ and ↵⇤ is zero.

• 2. x⇤ � b i.e. x⇤ is primal feasible

• 3. ↵⇤ � 0 i.e. ↵⇤ is dual feasible

• 4. ↵⇤(x⇤ � b) = 0 (called as complementary slackness)

We use the first one to relate x⇤ and ↵⇤. We use the last one (complimentary
slackness) to argue that ↵⇤ = 0 if constraint is inactive and ↵⇤ > 0 if constraint
is active and tight.

What does strong duality say about ↵⇤ (the ↵ that achieved optimal value of
dual) and x⇤ (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT con-
ditions) are true for ↵⇤ and x⇤:

• 1. 5L(x⇤,↵⇤) = 0 i.e. Gradient of Lagrangian at x⇤ and ↵⇤ is zero.

• 2. x⇤ � b i.e. x⇤ is primal feasible

• 3. ↵⇤ � 0 i.e. ↵⇤ is dual feasible

• 4. ↵⇤(x⇤ � b) = 0 (called as complementary slackness)

We use the first one to relate x⇤ and ↵⇤. We use the last one (complimentary
slackness) to argue that ↵⇤ = 0 if constraint is inactive and ↵⇤ > 0 if constraint
is active and tight.

What does strong duality say about ↵⇤ (the ↵ that achieved optimal value of
dual) and x⇤ (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT con-
ditions) are true for ↵⇤ and x⇤:

• 1. 5L(x⇤,↵⇤) = 0 i.e. Gradient of Lagrangian at x⇤ and ↵⇤ is zero.

• 2. x⇤ � b i.e. x⇤ is primal feasible

• 3. ↵⇤ � 0 i.e. ↵⇤ is dual feasible

• 4. ↵⇤(x⇤ � b) = 0 (called as complementary slackness)

We use the first one to relate x⇤ and ↵⇤. We use the last one (complimentary
slackness) to argue that ↵⇤ = 0 if constraint is inactive and ↵⇤ > 0 if constraint
is active and tight.
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Solving the dual
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Solving the dual

Find the dual: Optimization over x is unconstrained.

Solve: Now need to maximize L(x*,α) over α ≥ 0 
Solve unconstrained problem to get α’ and then take max(α’,0)

a = 0 constraint is inactive, α > 0  constraint is active (tight)

) ↵0 = 2b



Dual SVM – linearly separable case

• Primal problem:

• Dual problem (derivation):  
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w – weights on features (d-dim problem)

a – weights on training pts (n-dim problem)

n training points, d features (x1, …, xn) where xi is a d-dimensional 
vector 



Dual SVM – linearly separable case

• Dual problem:  
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If we can solve for 
as (dual problem), 
then we have a 
solution for w,b
(primal problem) 



Dual SVM – linearly separable case

• Dual problem:  
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Dual SVM – linearly separable case

Dual problem is also QP
Solution gives ajs

28

What about b?



Dual SVM: Sparsity of dual solution
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w
.x

+ 
b 

= 
0

Only few ajs can be 
non-zero : where 
constraint is active and 
tight

(w.xj + b)yj = 1

Support vectors –
training points j whose 
ajs are non-zero

aj > 0

aj > 0

aj > 0

aj = 0

aj = 0

aj = 0



Dual SVM – linearly separable case

Dual problem is also QP
Solution gives ajs
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Use any one of support vectors with 
ak>0 to compute b since constraint is 
tight (w.xk + b)yk = 1



Dual SVM – non-separable case
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• Primal problem:

• Dual problem:  
Lagrange 
Multipliers

,{ξj} 

,{ξj} L(w, b, ⇠,↵, µ)

HW3!



Dual SVM – non-separable case
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Dual problem is also QP
Solution gives ajs

comes from Intuition:
If C→∞, recover hard-margin SVM

@L

@⇠
= 0



So why solve the dual SVM?
• There are some quadratic programming algorithms 

that can solve the dual faster than the primal, 
(specially in high dimensions d>>n)

• But, more importantly, the “kernel trick”!!!
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