Support Vector Machines (SVMs) Recap...

Aarti Singh

Machine Learning 10-315 Oct 26, 2020

Hard-margin SVM

Data perfectly separable by a linear decision boundary

Hard margin approach

$$\min_{\mathbf{w},b} \mathbf{w}.\mathbf{w}$$

s.t. (**w**.**x**_j+b) $y_j \ge 1 \quad \forall j$

Solve using Quadratic Programming (QP)

Margin, $\gamma \alpha$ 1/

Soft-margin SVM

Allow "error" in classification

Soft margin approach

$$\min_{\mathbf{w},b,\{\xi_j\}} \mathbf{w}.\mathbf{w} + C \sum_j \xi_j$$
s.t. $(\mathbf{w}.\mathbf{x}_j + b) \ y_j \ge 1 - \xi_j \quad \forall j$

$$\xi_j \ge 0 \quad \forall j$$

C - tradeoff parameter (chosen by cross-validation)

Still QP 😳

Slack variables – Hinge loss

(w.x_j+b) $y_j \ge 1-\xi_j \quad \forall j$

What is the slack ξ_j for the following points?

Confidence | Slack

Slack variables – Hinge loss

Notice that

Slack variables – Hinge loss

Notice that

$$\xi_j = (1 - (\mathbf{w} \cdot x_j + b)y_j))_+$$

Regularized Hinge loss $\min_{\mathbf{w},b} \mathbf{w}.\mathbf{w} + C \sum_{j} (1-(\mathbf{w}.x_j+b)\mathbf{y}_j)_+$

$\begin{array}{l} \underset{w,b,\{\xi_j\}}{\min \ w.w + C \sum \xi_j} \\ \text{s.t.} \ (w.x_j+b) \ y_j \geq 1-\xi_j \quad \forall j \\ \xi_i \geq 0 \quad \forall j \end{array} \begin{array}{l} \begin{array}{l} port \ Vectors \\ \forall j \end{array} \end{array}$

Margin support vectors

 $\xi_j = 0$, (**w**.**x**_j+*b*) $y_j = 1$ (don't contribute to objective but enforce constraints on solution)

Correctly classified but on margin

Non-margin support vectors $\xi_j > 0$ (contribute to both objective

and constraints)

 $1 > \xi_j > 0$ Correctly classified but inside margin

 $\xi_j > 1$ Incorrectly classified 7

What about multiple classes?

One vs. rest

Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights

min $\{w^{(y)}\}, \{b^{(y)}\} = \sum_{y} w^{(y)} \cdot w^{(y)}$ $\mathbf{w}^{(y_j)} \cdot \mathbf{x}_j + b^{(y_j)} \ge \mathbf{w}^{(y')} \cdot \mathbf{x}_j + b^{(y')} + 1, \ \forall y' \ne y_j, \ \forall j$ 0 Margin - gap between correct class and nearest other class \bigcirc \bigcirc ᠿ ♣ ♣ $y = \arg \max_{k} \mathbf{w}^{(k)} \cdot \mathbf{x} + \mathbf{b}^{(k)}$ 4 ♣ ♣ ÷ 10

Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights

Support Vector Machines - Dual formulation

Aarti Singh

Machine Learning 10-315 Oct 26, 2020

n training points d features $(\mathbf{x}_1, ..., \mathbf{x}_n)$ \mathbf{x}_j is a d-dimensional vector

• <u>Primal problem</u>: minimize_{**w**,b} $\frac{1}{2}$ **w**.**w** $\left(\mathbf{w}.\mathbf{x}_{j}+b\right)y_{j} \geq 1, \forall j$

w - weights on features (d-dim problem)

- Convex quadratic program quadratic objective, linear constraints
- But expensive to solve if d is very large
- Often solved in dual form (n-dim problem)

Detour - Constrained Optimization

$$\begin{array}{ll} \min_{x} x^2 \\ \text{s.t.} & x \ge b \end{array} \qquad x^* = \max(b, 0)$$

Constrained Optimization

$$\begin{array}{l} \min_x \ x^2 \\ \text{s.t.} \ x \ge b \end{array}$$

Equivalent unconstrained optimization: $min_x x^2 + I(x-b)$

Replace with lower bound ($\alpha \ge 0$) x² + I(x-b) $\ge x^2 - \alpha(x-b)$

Primal and Dual Problems

Notice that

Primal problem: p* = $\min_{x} x^2$ = $\min_{x} \max_{\alpha \ge 0} L(x, \alpha)$ s.t. $x \ge b$

Why?
$$L(x, \alpha) = x^2 - \alpha(x - b)$$

$$\max_{\alpha \ge 0} L(x, \alpha) = x^2 - \min_{\alpha \ge 0} \alpha(x - b) =$$

Dual problem: d* = $\max_{\alpha} d(\alpha) = \max_{\alpha} \min_{x} L(x, \alpha)$ s.t. $\alpha \ge 0$ s.t. $\alpha \ge 0$

Constrained Optimization – Dual Problem

Primal problem:

$$\begin{array}{ll} \min_x \ x^2 \\ \text{s.t.} \ x \ge b \end{array}$$

Moving the constraint to objective function Lagrangian:

$$L(x, \alpha) = x^2 - \alpha(x - b)$$

s.t. $\alpha \ge 0$

 α = 0 constraint is inactive α > 0 constraint is active

Dual problem:

$$\max_{\alpha} d(\alpha) \xrightarrow{} \min_{x} L(x, \alpha)$$

s.t. $\alpha \ge 0$

Primal problem: $p^* = \min_x x^2$ Dual problem: $d^* = \max_\alpha d(\alpha)$ s.t. $x \ge b$ s.t. $\alpha \ge 0$

$$= \min_{x} \max_{\alpha \ge 0} L(x, \alpha) \qquad = \max_{\alpha} \min_{x} L(x, \alpha)$$

s.t. $\alpha \ge 0$

Dual problem (maximization) is always concave even if primal is not convex

Why? Pointwise infimum of concave functions is concave. [Pointwise supremum of convex functions is convex.] $L(x, \alpha) = x^2 - \alpha(x - b)$

As many dual variables α as constraints, helpful if fewer constraints than dimension of primal variable x

Primal problem: $p^* = \min_x x^2$ Dual problem: $d^* = \max_\alpha d(\alpha)$ s.t. $x \ge b$ s.t. $\alpha \ge 0$

Weak duality: The dual solution d* lower bounds the primal solution p* i.e. d* ≤ p*

To see this, recall
$$L(x, \alpha) = x^2 - \alpha(x - b)$$

For every feasible x' (i.e. $x' \ge b$) and feasible α' (i.e. $\alpha' \ge 0$), notice that

$$d(\alpha) = \min_x L(x, \alpha) \le x'^2 - \alpha'(x'-b) \le x'^2$$

Since above holds true for every feasible x', we have $d(\alpha) \le x^{*2} = p^*$

Primal problem: $p^* = \min_x x^2$ Dual problem: $d^* = \max_\alpha d(\alpha)$ s.t. $x \ge b$ s.t. $\alpha \ge 0$

Weak duality: The dual solution d* lower bounds the primal solution p* i.e. d* ≤ p*

Strong duality: d* = p* holds often for many problems of interest e.g. if the primal is a feasible convex objective with linear constraints

What does strong duality say about α^* (the α that achieved optimal value of dual) and x^* (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT conditions) are true for α^* and x^* :

- 1. $\nabla L(x^*, \alpha^*) = 0$ i.e. Gradient of Lagrangian at x^* and α^* is zero.
- 2. $x^* \ge b$ i.e. x^* is primal feasible
- 3. $\alpha^* \ge 0$ i.e. α^* is dual feasible
- 4. $\alpha^*(x^* b) = 0$ (called as complementary slackness)

We use the first one to relate x^* and α^* . We use the last one (complementary slackness) to argue that $\alpha^* = 0$ if constraint is inactive and $\alpha^* > 0$ if constraint is active and tight.

Solving the dual

Solving:

 $\max_{\alpha} \min_{x} x^{2} - \alpha(x - b)$ s.t. $\alpha \ge 0$

 $L(x, \alpha)$

Solving the dual

Solving:

$$\max_{lpha} \min_{x} x^2 - lpha(x-b)$$

s.t. $lpha \ge 0$

Find the dual: Optimization over x is unconstrained.

$$\frac{\partial L}{\partial x} = 2x - \alpha = 0 \Rightarrow x^* = \frac{\alpha}{2} \qquad L(x^*, \alpha) = \frac{\alpha^2}{4} - \alpha \left(\frac{\alpha}{2} - b\right)$$
$$= -\frac{\alpha^2}{4} + b\alpha$$

2

<u>Solve</u>: Now need to maximize $L(x^*, \alpha)$ over $\alpha \ge 0$ Solve unconstrained problem to get α' and then take max($\alpha', 0$)

 $L(x, \alpha)$

$$\frac{\partial}{\partial \alpha} L(x^*, \alpha) = -\frac{\alpha}{2} + b \quad \Rightarrow \alpha' = 2b$$
$$\Rightarrow \alpha^* = \max(2b, 0) \qquad \qquad \Rightarrow x^* = \frac{\alpha^*}{2} = \max(b, 0)$$

 α = 0 constraint is inactive, α > 0 constraint is active (tight)

n training points, d features

 $(\mathbf{x}_1, ..., \mathbf{x}_n)$ where x_i is a d-dimensional vector

<u>Primal problem</u>:

minimize_{**w**,b}
$$\frac{1}{2}$$
w.**w**
 $\left(\mathbf{w}.\mathbf{x}_{j}+b\right)y_{j} \geq 1, \forall j$

w - weights on features (d-dim problem)

• <u>Dual problem</u> (derivation):

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

$$\alpha_{j} \ge 0, \ \forall j$$

 α - weights on training pts (n-dim problem)

• Dual problem:

 $\max_{\alpha} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} - 1 \right]$ $\alpha_{j} \ge 0, \ \forall j$

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \qquad \Rightarrow \mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$
$$\frac{\partial L}{\partial b} = 0 \qquad \Rightarrow \sum_{j} \alpha_{j} y_{j} = 0$$

If we can solve for α s (dual problem), then we have a solution for **w**,b (primal problem)

• Dual problem:

 $\max_{\alpha} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} - 1 \right]$ $\Rightarrow \mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j} \qquad \Rightarrow \sum_{j} \alpha_{j} y_{j} = 0$

maximize_{α} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$ $\sum_{i} \alpha_{i} y_{i} = 0$ $\alpha_{i} \ge 0$

Dual SVM: Sparsity of dual solution

$$\mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

Only few $\alpha_j s$ can be non-zero : where constraint is active and tight

$$(w.x_{j} + b)y_{j} = 1$$

Support vectors – training points j whose α_j s are non-zero 29

maximize_{α} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$ $\sum_{i} \alpha_{i} y_{i} = 0$ $\alpha_{i} \ge 0$

Dual problem is also QP Solution gives $\alpha_j s \longrightarrow$

Use any one of support vectors with $\alpha_k > 0$ to compute b since constraint is tight (w.x_k + b)y_k = 1

$$\mathbf{w} = \sum_i lpha_i y_i \mathbf{x}_i$$

 $b = y_k - \mathbf{w}.\mathbf{x}_k$
for any k where $lpha_k > 0$

Dual SVM – non-separable case

• Primal problem:

$$\begin{aligned} \min_{\mathbf{w}, b, \{\xi_j\}} \frac{1}{2} \mathbf{w} \cdot \mathbf{w} + C \sum_j \xi_j \\ \left(\mathbf{w} \cdot \mathbf{x}_j + b\right) y_j \geq 1 - \xi_j, \ \forall j \\ \xi_j \geq 0, \ \forall j \end{aligned}$$

• Dual problem:

Lagrange Multipliers

$$\begin{array}{l} \max_{\alpha,\mu} \min_{\mathbf{w},b,\{\xi_j\}} L(\mathbf{w},b,\xi,\alpha,\mu) \\ s.t.\alpha_j \geq 0 \quad \forall j \\ \mu_j \geq 0 \quad \forall j \\ \text{HW3!} \end{array}$$

Dual SVM – non-separable case

$$\begin{split} \text{maximize}_{\alpha} \quad \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j} \\ \sum_{i} \alpha_{i} y_{i} &= 0 \\ C \geq \alpha_{i} \geq 0 \\ \text{comes from } \frac{\partial L}{\partial \xi} = 0 \quad \\ \hline \begin{array}{c} \text{Intuition:} \\ \text{If } C \rightarrow \infty, \text{ recover hard-margin SVM} \end{array} \end{split}$$

Dual problem is also QP Solution gives $\alpha_j s$

$$\mathbf{w} = \sum_i lpha_i y_i \mathbf{x}_i$$

 $b = y_k - \mathbf{w}.\mathbf{x}_k$
for any k where $C > lpha_k > 0$

So why solve the dual SVM?

- There are some quadratic programming algorithms that can solve the dual faster than the primal, (specially in high dimensions d>>n)
- But, more importantly, the "kernel trick"!!!