
Support Vector Machines
(SVMs)
Recap…
Aarti Singh

Machine Learning 10-315
Oct 26, 2020

Hard-margin SVM

2

min w.w
w,b

s.t. (w.xj+b) yj ≥ 1 "j

Data perfectly separable by a
linear decision boundary

Hard margin approach

g
Margin, g ⍺ 1/ǁwǁ

Solve using Quadratic
Programming (QP)

Soft-margin SVM

3

min w.w + C Σξjw,b,{ξj}

s.t. (w.xj+b) yj ≥ 1-ξj "j

ξj ≥ 0 "j

j

Allow “error” in classification

ξj - “slack” variables
= (>1 if xj misclassifed)

pay linear penalty if mistake

C - tradeoff parameter (chosen by
cross-validation)

Still QP J

Soft margin approach

4

w
.x

+
b

=
1

w
.x

+
b

=
-1

Slack variables – Hinge loss

What is the slack ξj for the
following points?

(w.xj+b) yj ≥ 1-ξj "j

Confidence | Slack

5

w
.x

+
b

=
1

w
.x

+
b

=
-1

Notice that

Slack variables – Hinge loss

0-1 loss
0 1

Hinge loss

6

w
.x

+
b

=
1

w
.x

+
b

=
-1

Notice that

Slack variables – Hinge loss

Regularized Hinge loss

0-1 loss
0 1

min w.w + C Σ(1-(w.xj+b)yj)+w,b j

Hinge loss

Support Vectors

7

w
.x

+
b

=
1

w
.x

+
b

=
-1

Margin support vectors
ξj = 0, (w.xj+b) yj = 1
(don’t contribute to objective
but enforce constraints on
solution)

Correctly classified but on
margin

Non-margin support
vectors
ξj > 0
(contribute to both objective
and constraints)

1 > ξj > 0 Correctly classified
but inside margin
ξj > 1 Incorrectly classified

min w.w + C Σ ξjw,b,{ξj}
s.t. (w.xj+b) yj ≥ 1-ξj "j

ξj ≥ 0 "j

What about multiple classes?

8

One vs. rest

9

Learn 3 classifiers
separately:
Class k vs. rest

(wk, bk)k=1,2,3

y = arg max wk.x + bk
k

But wks may not be
based on the same scale.
Note: (aw).x + (ab) is also
a solution

Learn 1 classifier: Multi-class SVM

10

Simultaneously learn 3 sets of weights

y = arg maxk w(k).x + b(k)

Margin - gap between correct
class and nearest other class

{w(y)}, {b(y)}

Learn 1 classifier: Multi-class SVM

11

Simultaneously learn 3 sets of weights

y = arg max w(k).x + b(k)

Joint optimization: wks
have the same scale.

,{ξj} over {w(y)}, {b(y)} ,{ξj
(y)}

12

Support Vector Machines
- Dual formulation

Aarti Singh

Machine Learning 10-315
Oct 26, 2020

SVM – linearly separable case

• Convex quadratic program – quadratic objective, linear
constraints

• But expensive to solve if d is very large
• Often solved in dual form (n-dim problem)

14

w – weights on features (d-dim problem)

n training points (x1, …, xn)
d features xj is a d-dimensional vector

• Primal problem:

w
.x

+
b

=
0

Detour - Constrained Optimization

15

Constraint inactive Constraint active
(tight)

x⇤ = max(b, 0)

Constrained Optimization

16

b +ve

Equivalent unconstrained optimization:
minx x2 + I(x-b)

Replace with lower bound (a >= 0)
x2 + I(x-b) >= x2 - a(x-b)

Primal and Dual Problems

17

Primal problem: p* =

Notice that

= min
x

max
↵�0

L(x,↵)

Why?

min
x

max
↵�0

L(x,↵) = x2 �min
↵�0

↵(x� b)

Dual problem: d* = =

=

Constrained Optimization – Dual Problem

18

Moving the constraint to objective function
Lagrangian:

Dual problem:

a = 0 constraint is inactive
a > 0 constraint is active

b +ve

Primal problem:

Connection between Primal and Dual

19

Primal problem: p* = Dual problem: d* =

Ø Dual problem (maximization) is always concave even if
primal is not convex

Ø As many dual variables a as constraints, helpful if fewer
constraints than dimension of primal variable x

min
x

max
↵�0

L(x,↵) ==

Why? Pointwise infimum of concave functions is concave.
[Pointwise supremum of convex functions is convex.]

Connection between Primal and Dual

20

Primal problem: p* =

Ø Weak duality: The dual solution d* lower bounds the primal
solution p* i.e. d* ≤ p*

To see this, recall

For every feasible x’ (i.e. x’ ≥ b) and feasible α’ (i.e. α’ ≥ 0) , notice
that

d(α) = ≤ x’2 – a’(x’-b) ≤ x’2

Since above holds true for every feasible x’, we have d(α) ≤ x*2 = p*

Dual problem: d* =

Connection between Primal and Dual

21

Primal problem: p* =

Ø Weak duality: The dual solution d* lower bounds the primal
solution p* i.e. d* ≤ p*

Dual problem: d* =

Ø Strong duality: d* = p* holds often for many problems of
interest e.g. if the primal is a feasible convex objective with linear
constraints

22

Connection between Primal and Dual
What does strong duality say about ↵⇤ (the ↵ that achieved optimal value of
dual) and x⇤ (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT con-
ditions) are true for ↵⇤ and x⇤:

• 1. 5L(x⇤,↵⇤) = 0 i.e. Gradient of Lagrangian at x⇤ and ↵⇤ is zero.

• 2. x⇤ � b i.e. x⇤ is primal feasible

• 3. ↵⇤ � 0 i.e. ↵⇤ is dual feasible

• 4. ↵⇤(x⇤ � b) = 0 (called as complementary slackness)

We use the first one to relate x⇤ and ↵⇤. We use the last one (complimentary
slackness) to argue that ↵⇤ = 0 if constraint is inactive and ↵⇤ > 0 if constraint
is active and tight.

What does strong duality say about ↵⇤ (the ↵ that achieved optimal value of
dual) and x⇤ (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT con-
ditions) are true for ↵⇤ and x⇤:

• 1. 5L(x⇤,↵⇤) = 0 i.e. Gradient of Lagrangian at x⇤ and ↵⇤ is zero.

• 2. x⇤ � b i.e. x⇤ is primal feasible

• 3. ↵⇤ � 0 i.e. ↵⇤ is dual feasible

• 4. ↵⇤(x⇤ � b) = 0 (called as complementary slackness)

We use the first one to relate x⇤ and ↵⇤. We use the last one (complimentary
slackness) to argue that ↵⇤ = 0 if constraint is inactive and ↵⇤ > 0 if constraint
is active and tight.

What does strong duality say about ↵⇤ (the ↵ that achieved optimal value of
dual) and x⇤ (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT con-
ditions) are true for ↵⇤ and x⇤:

• 1. 5L(x⇤,↵⇤) = 0 i.e. Gradient of Lagrangian at x⇤ and ↵⇤ is zero.

• 2. x⇤ � b i.e. x⇤ is primal feasible

• 3. ↵⇤ � 0 i.e. ↵⇤ is dual feasible

• 4. ↵⇤(x⇤ � b) = 0 (called as complementary slackness)

We use the first one to relate x⇤ and ↵⇤. We use the last one (complimentary
slackness) to argue that ↵⇤ = 0 if constraint is inactive and ↵⇤ > 0 if constraint
is active and tight.

23

Solving the dual

24

Solving the dual

Find the dual: Optimization over x is unconstrained.

Solve: Now need to maximize L(x*,α) over α ≥ 0
Solve unconstrained problem to get α’ and then take max(α’,0)

a = 0 constraint is inactive, α > 0 constraint is active (tight)

) ↵0 = 2b

Dual SVM – linearly separable case

• Primal problem:

• Dual problem (derivation):

25

w – weights on features (d-dim problem)

a – weights on training pts (n-dim problem)

n training points, d features (x1, …, xn) where xi is a d-dimensional
vector

Dual SVM – linearly separable case

• Dual problem:

26

If we can solve for
as (dual problem),
then we have a
solution for w,b
(primal problem)

Dual SVM – linearly separable case

• Dual problem:

27

Dual SVM – linearly separable case

Dual problem is also QP
Solution gives ajs

28

What about b?

Dual SVM: Sparsity of dual solution

29

w
.x

+
b

=
0

Only few ajs can be
non-zero : where
constraint is active and
tight

(w.xj + b)yj = 1

Support vectors –
training points j whose
ajs are non-zero

aj > 0

aj > 0

aj > 0

aj = 0

aj = 0

aj = 0

Dual SVM – linearly separable case

Dual problem is also QP
Solution gives ajs

30

Use any one of support vectors with
ak>0 to compute b since constraint is
tight (w.xk + b)yk = 1

Dual SVM – non-separable case

31

• Primal problem:

• Dual problem:
Lagrange
Multipliers

,{ξj}

,{ξj} L(w, b, ⇠,↵, µ)

HW3!

Dual SVM – non-separable case

32

Dual problem is also QP
Solution gives ajs

comes from Intuition:
If C→∞, recover hard-margin SVM

@L

@⇠
= 0

So why solve the dual SVM?
• There are some quadratic programming algorithms

that can solve the dual faster than the primal,
(specially in high dimensions d>>n)

• But, more importantly, the “kernel trick”!!!

33

