Support Vector Machines - Dual formulation and Kernel Trick

Aarti Singh

Machine Learning 10-315 Oct 28, 2020

Constrained Optimization – Dual Problem

Primal problem:

$$\begin{array}{ll} \min_x \ x^2 \\ \text{s.t.} \ x \ge b \end{array}$$

Moving the constraint to objective function Lagrangian:

$$L(x, \alpha) = x^2 - \alpha(x - b)$$

s.t. $\alpha \ge 0$

Dual problem:

$$\max_{\alpha} d(\alpha) \xrightarrow{} \min_{x} L(x, \alpha)$$

s.t. $\alpha \ge 0$

Connection between Primal and Dual

Primal problem: $p^* = \min_x x^2$ Dual problem: $d^* = \max_\alpha d(\alpha)$ s.t. $x \ge b$ s.t. $\alpha \ge 0$

Weak duality: The dual solution d* lower bounds the primal solution p* i.e. d* ≤ p*

Duality gap = p*-d*

Strong duality: d* = p* holds often for many problems of interest e.g. if the primal is a feasible convex objective with linear constraints (Slater's condition)

Connection between Primal and Dual

What does strong duality say about α^* (the α that achieved optimal value of dual) and x^* (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT conditions) are true for α^* and x^* :

- 1. $\nabla L(x^*, \alpha^*) = 0$ i.e. Gradient of Lagrangian at x^* and α^* is zero.
- 2. $x^* \ge b$ i.e. x^* is primal feasible
- 3. $\alpha^* \ge 0$ i.e. α^* is dual feasible
- 4. $\alpha^*(x^* b) = 0$ (called as complementary slackness)

We use the first one to relate x^* and α^* . We use the last one (complementary slackness) to argue that $\alpha^* = 0$ if constraint is inactive and $\alpha^* > 0$ if constraint is active and tight.

Solving the dual

Solving:

 $\max_{\alpha} \min_{x} x^{2} - \alpha(x - b)$ s.t. $\alpha \ge 0$

 $L(x, \alpha)$

Solving the dual

Solving:

$$\max_{lpha} \min_{x} x^2 - lpha(x-b)$$

s.t. $lpha \ge 0$

Find the dual: Optimization over x is unconstrained.

$$\frac{\partial L}{\partial x} = 2x - \alpha = 0 \Rightarrow x^* = \frac{\alpha}{2} \qquad L(x^*, \alpha) = \frac{\alpha^2}{4} - \alpha \left(\frac{\alpha}{2} - b\right)$$
$$= -\frac{\alpha^2}{4} + b\alpha$$

2

<u>Solve</u>: Now need to maximize $L(x^*, \alpha)$ over $\alpha \ge 0$ Solve unconstrained problem to get α' and then take max($\alpha', 0$)

 $L(x, \alpha)$

$$\frac{\partial}{\partial \alpha} L(x^*, \alpha) = -\frac{\alpha}{2} + b \quad \Rightarrow \alpha' = 2b$$
$$\Rightarrow \alpha^* = \max(2b, 0) \qquad \qquad \Rightarrow x^* = \frac{\alpha^*}{2} = \max(b, 0)$$

 α = 0 constraint is inactive, α > 0 constraint is active (tight)

n training points, d features

 $(\mathbf{x}_1, ..., \mathbf{x}_n)$ where x_i is a d-dimensional vector

Primal problem:

minimize_{**w**,b}
$$\frac{1}{2}$$
w.**w**
 $\left(\mathbf{w}.\mathbf{x}_{j}+b\right)y_{j} \geq 1, \forall j$

w - weights on features (d-dim problem)

• <u>Dual problem</u> (derivation):

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

$$\alpha_{j} \ge 0, \ \forall j$$

 α - weights on training pts (n-dim problem)

• Dual problem (derivation):

 $\max_{\alpha} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} - 1 \right]$ $\alpha_{j} \ge 0, \ \forall j$

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \qquad \Rightarrow \mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$
$$\frac{\partial L}{\partial b} = 0 \qquad \Rightarrow \sum_{j} \alpha_{j} y_{j} = 0$$

If we can solve for α s (dual problem), then we have a solution for **w**,b (primal problem)

• Dual problem:

 $\max_{\alpha} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} - 1 \right]$ $\Rightarrow \mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j} \qquad \Rightarrow \sum_{j} \alpha_{j} y_{j} = 0$

maximize_{α} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$ $\sum_{i} \alpha_{i} y_{i} = 0$ $\alpha_{i} \ge 0$

Dual SVM: Sparsity of dual solution

$$\mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

Only few $\alpha_j s$ can be non-zero : where constraint is active and tight

$$(w.x_{j} + b)y_{j} = 1$$

Support vectors – training points j whose α_j s are non-zero 11

maximize_{α} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$ $\sum_{i} \alpha_{i} y_{i} = 0$ $\alpha_{i} \ge 0$

Dual problem is also QP Solution gives $\alpha_j s \longrightarrow$

Use any one of support vectors with $\alpha_k > 0$ to compute b since constraint is tight (w.x_k + b)y_k = 1

$$\mathbf{w} = \sum_i lpha_i y_i \mathbf{x}_i$$

 $b = y_k - \mathbf{w}.\mathbf{x}_k$
for any k where $lpha_k > 0$

Dual SVM – non-separable case

• Primal problem:

$$\begin{array}{l} \text{minimize}_{\mathbf{w},b,\{\xi_j\}} \frac{1}{2} \mathbf{w} \cdot \mathbf{w} + C \sum_j \xi_j \\ \left(\mathbf{w} \cdot \mathbf{x}_j + b\right) y_j \ge \mathbf{1} - \xi_j, \ \forall j \\ \xi_j \ge \mathbf{0}, \ \forall j \end{array}$$

• Dual problem:

Lagrange Multipliers

$$\begin{array}{l} \max_{\alpha,\mu} \min_{\mathbf{w},b,\{\xi_j\}} L(\mathbf{w},b,\xi,\alpha,\mu) \\ s.t.\alpha_j \geq 0 \quad \forall j \\ \mu_j \geq 0 \quad \forall j \\ \text{HW3!} \end{array}$$

Dual SVM – non-separable case

$$\begin{split} \text{maximize}_{\alpha} \quad \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j} \\ \sum_{i} \alpha_{i} y_{i} &= 0 \\ C \geq \alpha_{i} \geq 0 \\ \text{comes from } \frac{\partial L}{\partial \xi} = 0 \quad \\ \hline \begin{array}{c} \text{Intuition:} \\ \text{If } C \rightarrow \infty, \text{ recover hard-margin SVM} \end{array} \end{split}$$

Dual problem is also QP Solution gives $\alpha_j s$

$$\mathbf{w} = \sum_i lpha_i y_i \mathbf{x}_i$$

 $b = y_k - \mathbf{w}.\mathbf{x}_k$
for any k where $C > lpha_k > 0$

So why solve the dual SVM?

- There are some quadratic programming algorithms that can solve the dual faster than the primal, (specially in high dimensions d>>n)
- But, more importantly, the "kernel trick"!!!

Separable using higher-order features

16

What if data is not linearly separable?

Use features of features of features....

$$\Phi(\mathbf{x}) = (x_1^2, x_2^2, x_1x_2, \dots, \exp(x_1))$$

Feature space becomes really large very quickly!

Higher Order Polynomials

m – input features

d – degree of polynomial

num. terms
$$= \begin{pmatrix} d+m-1\\ d \end{pmatrix} = \frac{(d+m-1)!}{d!(m-1)!} \sim m^d$$

grows fast! d = 6, m = 100 about 1.6 billion terms

Dual formulation only depends on dot-products, not on w!

maximize_{$$\alpha$$} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$
 $\sum_{i} \alpha_{i} y_{i} = 0$
 $C \ge \alpha_{i} \ge 0$
maximize _{α} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$
 $K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j})$
 $\sum_{i} \alpha_{i} y_{i} = 0$
 $C \ge \alpha_{i} \ge 0$

 $\Phi(\mathbf{x})$ – High-dimensional feature space, but never need it explicitly as long as we can compute the dot product fast using some Kernel K

Dot Product of Polynomials

 $\Phi(\mathbf{x}) =$ polynomials of degree exactly d

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$

d=1
$$\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = x_1 z_1 + x_2 z_2 = \mathbf{x} \cdot \mathbf{z}$$

$$d=2 \ \Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \begin{bmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix} \cdot \begin{bmatrix} z_1^2 \\ \sqrt{2}z_1z_2 \\ z_2^2 \end{bmatrix} = x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1x_2z_1z_2$$
$$= (x_1z_1 + x_2z_2)^2$$
$$= (\mathbf{x} \cdot \mathbf{z})^2$$

d $\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = K(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z})^d$

Finally: The Kernel Trick!

maximize_{$$\alpha$$} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$
 $K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j})$
 $\sum_{i} \alpha_{i} y_{i} = 0$
 $C \ge \alpha_{i} \ge 0$

- Never represent features explicitly
 - Compute dot products in closed form
- Constant-time high-dimensional dotproducts for many classes of features

$$\mathbf{w} = \sum_{i} lpha_{i} y_{i} \Phi(\mathbf{x}_{i})$$

 $b = y_{k} - \mathbf{w} \cdot \Phi(\mathbf{x}_{k})$
for any k where $C > lpha_{k} > 0$

Common Kernels

• Polynomials of degree d

$$K(\mathbf{u},\mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$$

• Polynomials of degree up to d

$$K(\mathbf{u},\mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$$

 Gaussian/Radial kernels (polynomials of all orders – recall series expansion of exp)

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||^2}{2\sigma^2}\right)$$

• Sigmoid

$$K(\mathbf{u},\mathbf{v}) = \tanh(\eta\mathbf{u}\cdot\mathbf{v}+\nu)$$

Mercer Kernels

What functions are valid kernels that correspond to feature vectors $\varphi(\mathbf{x})$?

Answer: Mercer kernels K

- K is continuous
- K is symmetric
- K is positive semi-definite, i.e. $\mathbf{x}^{\mathsf{T}}\mathbf{K}\mathbf{x} \ge 0$ for all \mathbf{x}

Ensures optimization is concave maximization

Overfitting

- Huge feature space with kernels, what about overfitting???
 - Maximizing margin leads to sparse set of support vectors
 - Some interesting theory says that SVMs search for simple hypothesis with large margin
 - Often robust to overfitting

What about classification time?

- For a new input **x**, if we need to represent $\Phi(\mathbf{x})$, we are in trouble!
- Recall classifier: sign(w.Φ(x)+b)

$$\mathbf{w} = \sum_{i} lpha_{i} y_{i} \Phi(\mathbf{x}_{i})$$

 $b = y_{k} - \mathbf{w} \cdot \Phi(\mathbf{x}_{k})$
for any k where $C > lpha_{k} > 0$

• Using kernels we are cool!

$$K(\mathbf{u},\mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$$

- Choose a set of features and kernel function
- Solve dual problem to obtain support vectors $\boldsymbol{\alpha}_i$
- At classification time, compute:

$$\mathbf{w} \cdot \Phi(\mathbf{x}) = \sum_{i} \alpha_{i} y_{i} K(\mathbf{x}, \mathbf{x}_{i})$$

$$b = y_{k} - \sum_{i} \alpha_{i} y_{i} K(\mathbf{x}_{k}, \mathbf{x}_{i})$$

for any k where $C > \alpha_{k} > 0$
Classify as
$$sign(\mathbf{w} \cdot \Phi(\mathbf{x}) + b)$$

• Iris dataset, 2 vs 13, Linear Kernel

• Iris dataset, 1 vs 23, Polynomial Kernel degree 2

• Iris dataset, 1 vs 23, Gaussian RBF kernel

• Iris dataset, 1 vs 23, Gaussian RBF kernel

• Chessboard dataset, Gaussian RBF kernel

• Chessboard dataset, Polynomial kernel

USPS Handwritten digits

1000 training and 1000 test instances

Results: SVM on raw images ~97% accuracy

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss

<u>SVM</u> : Hinge loss

 $\log(f(x_j), y_j) = (1 - (\mathbf{w} \cdot x_j + b)y_j))_+$

Logistic Regression : Log loss (-ve log conditional likelihood)

 $\log(f(x_j), y_j) = -\log P(y_j \mid x_j, \mathbf{w}, b) = \log(1 + e^{-(\mathbf{w} \cdot x_j + b)y_j})$

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!

Kernels in Logistic Regression

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \Phi(\mathbf{x}) + b)}}$$

• Define weights in terms of features:

$$\mathbf{w} = \sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i})$$

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}) + b)}}$$

$$= \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} K(\mathbf{x}, \mathbf{x}_{i}) + b)}}$$

• Derive simple gradient descent rule on α_i

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!
Solution sparse	Often yes!	Almost always no!

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!
Solution sparse	Often yes!	Almost always no!
Semantics of output	"Margin"	Real probabilities

What you need to know

- Maximizing margin
- Derivation of SVM formulation
- Slack variables and hinge loss
- Relationship between SVMs and logistic regression
 - 0/1 loss
 - Hinge loss
 - Log loss
- Tackling multiple class
 - One against All
 - Multiclass SVMs
- Dual SVM formulation
 - Easier to solve when dimension high d > n
 - Kernel Trick