Support Vector Machines - Dual formulation and Kernel Trick

Aarti Singh

Machine Learning 10-315 Oct 28, 2020

Constrained Optimization – Dual Problem

Primal problem:

$$
\min_{x} x^2
$$

s.t. $x \ge b$

Moving the constraint to objective function Lagrangian:

$$
L(x, \alpha) = x^2 - \alpha(x - b)
$$

s.t. $\alpha \ge 0$

Dual problem:

$$
\max_{\alpha} d(\alpha) \longrightarrow \min_{x} L(x, \alpha)
$$

s.t. $\alpha \ge 0$

Connection between Primal and Dual

Dual problem: d^* = $\max_{\alpha} d(\alpha)$ **Primal problem:** p^* **=** $\min_x x^2$ s.t. $\alpha > 0$ s.t. $x > b$

Ø **Weak duality:** The dual solution d* lower bounds the primal solution p^* i.e. $d^* \leq p^*$

Duality gap = p^* -d^{*}

Ø **Strong duality:** d* = p* holds often for many problems of interest e.g. if the primal is a feasible convex objective with linear constraints (Slater's condition)

Connection between Primal and Dual

What does strong duality say about α^* (the α that achieved optimal value of dual) and x^* (the x that achieves optimal value of primal problem)? What does strong duality say about α (the α that achieved optimal value of dual) and *x*⇤ (the *x* that achieves optimal value of primal problem)? dual) and x^* (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT conditions) are true for ↵⇤ and *x*⇤: Whenever strong duality holds, the following conditions (known as KKT conditions) are true for α^* and x^* : Whenever strong duality holds, the following conditions (known as KIXT conditions) are true for ↵⇤ and *x*⇤:

- 1. $\nabla L(x^*, \alpha^*) = 0$ i.e. Gradient of Lagrangian at x^* and α^* is zero. • 1. $\nabla L(x^*, \alpha^*) = 0$ i.e. Gradient of Lagrangian at x^* and α^* is zero. \forall 1. \forall $L(w, \alpha)$ = 0 i.e. Gradient of Lagrangian at *x* and α is zero.
- 2. $x^* > b$ i.e. x^* is primal feasible • 2. $x^* \geq b$ i.e. x^* is primal feasible $\frac{2.6}{2.6}$ $\frac{2}{2.6}$ $\frac{1}{2.6}$ \frac
- 3. $\alpha^* > 0$ i.e. α^* is dual feasible • 3. $\alpha^* \geq 0$ i.e. α^* is dual feasible $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ is dual feasible
- 4. $\alpha^*(x^* b) = 0$ (called as complementary slackness) • 4. $\alpha^*(x^* - b) = 0$ (called as complementary slackness) \mathbf{v} **1.** α (α *b*) = 0 (called as complementary slackness)

We use the first one to relate x^* and α^* . We use the last one (complimentary slackness) to argue We use the first one to relate x^* and e^* . We use the last one (complimentary since the instance of the constraint is inactive and a^{*} > 0 if constraint is active and tight. We use the first one to relate x^* and α^* . We use the last one (complimentary slackness) to argue that $\alpha^* = 0$ if constraint is inactive and $\alpha^* > 0$ if constraint is active and tight.

Solving the dual

Solving:

 $\overbrace{}^{x}$ $max_{\alpha} min_x x^2 - \alpha(x - b)$ s.t. $\alpha \geq 0$

 $L(x,\alpha)$

Solving the dual

Solving:

$$
\max_{\alpha} \min_{x} x^2 - \alpha(x - b)
$$

s.t. $\alpha \ge 0$

Find the dual: Optimization over x is unconstrained.

$$
\frac{\partial L}{\partial x} = 2x - \alpha = 0 \Rightarrow x^* = \frac{\alpha}{2} \qquad L(x^*, \alpha) = \frac{\alpha^2}{4} - \alpha \left(\frac{\alpha}{2} - b\right)
$$

$$
= -\frac{\alpha^2}{4} + b\alpha
$$

 Ω

Solve: Now need to maximize $L(x^*,\alpha)$ over $\alpha \geq 0$ Solve unconstrained problem to get α' and then take max($\alpha', 0$)

 $L(x,\alpha)$

$$
\frac{\partial}{\partial \alpha} L(x^*, \alpha) = -\frac{\alpha}{2} + b \implies \alpha' = 2b
$$

\n
$$
\Rightarrow \alpha^* = \max(2b, 0) \implies x^* = \frac{\alpha^*}{2} = \max(b, 0)
$$

 α = 0 constraint is inactive, α > 0 constraint is active (tight)

n training points, d features $(x_1, ..., x_n)$ where x_i is a d-dimensional vector

• Primal problem:

$$
\begin{array}{ll}\text{minimize}_{\mathbf{w},b} & \frac{1}{2}\mathbf{w}.\mathbf{w} \\ \left(\mathbf{w}.\mathbf{x}_j + b\right)y_j \ge 1, \ \forall j \end{array}
$$

w – weights on features (d-dim problem)

• Dual problem (derivation):

$$
L(\mathbf{w}, b, \alpha) = \frac{1}{2}\mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_j \left[\left(\mathbf{w} \cdot \mathbf{x}_j + b\right) y_j - 1 \right]
$$

$$
\alpha_j \ge 0, \ \forall j
$$

a **– weights on training pts (n-dim problem)**

• Dual problem (derivation):

 $\max_{\alpha} \min_{\mathbf{w},b} L(\mathbf{w},b,\alpha) = \frac{1}{2}\mathbf{w}.\mathbf{w} - \sum_j \alpha_j |(\mathbf{w}.\mathbf{x}_j + b) y_j - 1|$ $\alpha_j \geq 0, \ \forall j$

$$
\frac{\partial L}{\partial \mathbf{w}} = 0 \qquad \Rightarrow \mathbf{w} = \sum_{j} \alpha_j y_j \mathbf{x}_j
$$

$$
\frac{\partial L}{\partial b} = 0 \qquad \Rightarrow \sum_{j} \alpha_j y_j = 0
$$

If we can solve for α s (dual problem), then we have a solution for **w**,b (primal problem)

• Dual problem:

 $\max_{\alpha} \min_{\mathbf{w},b} L(\mathbf{w},b,\alpha) = \frac{1}{2}\mathbf{w}.\mathbf{w} - \sum_{i} \alpha_i |(\mathbf{w}.\mathbf{x}_i + b) y_i - 1|$ $\alpha_j \geq 0, \forall j$ $\Rightarrow \mathbf{w} = \sum_{j} \alpha_j y_j \mathbf{x}_j$ $\Rightarrow \sum_{j} \alpha_{j} y_{j} = 0$

maximize α $\sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$ $\sum_i \alpha_i y_i = 0$
 $\alpha_i \geq 0$

Dual SVM: Sparsity of dual solution

$$
\mathbf{w} = \sum_j \alpha_j y_j \mathbf{x}_j
$$

Only few α_j s can be non-zero : where constraint is active and tight

$$
(\mathbf{w}.\mathbf{x}_j + b)\mathbf{y}_j = 1
$$

11 **Support vectors** – training points j whose $\alpha_{\rm j}$ s are non-zero

maximize α $\sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$ $\sum_i \alpha_i y_i = 0$ $\alpha_i > 0$

Dual problem is also QP Solution gives α_j s

Use any one of support vectors with α_k >0 to compute b since constraint is tight (w.x_k + b) $y_k = 1$

$$
\mathbf{w} = \sum_{i} \alpha_i y_i \mathbf{x}_i
$$

$$
b = y_k - \mathbf{w} \cdot \mathbf{x}_k
$$

for any k where $\alpha_k > 0$

Dual SVM – non-separable case

• Primal problem:

$$
\begin{aligned}\n\text{minimize}_{\mathbf{w}, b, \{\xi_j\}} \frac{1}{2} \mathbf{w} \cdot \mathbf{w} + C \sum_j \xi_j \\
(\mathbf{w} \cdot \mathbf{x}_j + b) y_j &\ge 1 - \xi_j, \ \forall j \\
\xi_j &\ge 0, \ \forall j\n\end{aligned}
$$

• Dual problem: **Lagrange**

Multipliers

$$
\begin{array}{ll}\n\max_{\alpha,\mu} \min_{\mathbf{w},b,\{\xi_j\}} L(\mathbf{w},b,\xi,\alpha,\mu) \\
s.t. \alpha_j \geq 0 \quad \forall j \\
\mu_j \geq 0 \quad \forall j\n\end{array}
$$

Dual SVM – non-separable case

maximize α $\sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i \mathbf{x}_j$ $\sum_i \alpha_i y_i = 0$
 $C \ge \alpha_i \ge 0$ ∂L comes from $\frac{\partial L}{\partial t} = 0$ **Intuition:** $\frac{\partial \mathcal{L}}{\partial \xi} = 0$ If C→∞, recover hard-margin SVM

Dual problem is also QP Solution gives α_j s

$$
\mathbf{w} = \sum_{i} \alpha_i y_i \mathbf{x}_i
$$

$$
b = y_k - \mathbf{w}.\mathbf{x}_k
$$

for any k where $C > \alpha_k > 0$

So why solve the dual SVM?

- There are some quadratic programming algorithms that can solve the dual faster than the primal, (specially in high dimensions d>>n)
- But, more importantly, the "**kernel trick**"!!!

Separable using higher-order features

16

What if data is not linearly separable?

Use features of features of features of features….

$$
\Phi(\mathbf{x}) = (x_1^2, x_2^2, x_1x_2, \dots, \exp(x_1))
$$

Feature space becomes really large very quickly!

Higher Order Polynomials

 m – input features d – degree of polynomial

num. terms
$$
=
$$
 $\begin{pmatrix} d+m-1 \\ d \end{pmatrix} = \frac{(d+m-1)!}{d!(m-1)!} \sim m^d$

grows fast! $d = 6$, m = 100 about 1.6 billion terms

Dual formulation only depends on dot-products, not on w!

$$
\begin{array}{ll}\n\text{maximize}_{\alpha} & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j} \\
& \sum_{i} \alpha_{i} y_{i} = 0 \\
& C \geq \alpha_{i} \geq 0 \\
& \bigcup_{i} \mathbf{x}_{i} \\
\text{maximize}_{\alpha} & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j}) \\
& K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j}) \\
& \sum_{i} \alpha_{i} y_{i} = 0 \\
& C \geq \alpha_{i} \geq 0\n\end{array}
$$

Φ(**x**) – High-dimensional feature space, but never need it explicitly as long as we can compute the dot product fast using some Kernel K

Dot Product of Polynomials

 $\Phi(x)$ = polynomials of degree exactly d

$$
\mathbf{x} = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] \quad \mathbf{z} = \left[\begin{array}{c} z_1 \\ z_2 \end{array} \right]
$$

$$
\mathsf{d=1} \quad \Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] \cdot \left[\begin{array}{c} z_1 \\ z_2 \end{array} \right] = x_1 z_1 + x_2 z_2 = \mathbf{x} \cdot \mathbf{z}
$$

$$
d=2 \quad \Phi(x) \cdot \Phi(z) = \begin{bmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix} \cdot \begin{bmatrix} z_1^2 \\ \sqrt{2}z_1z_2 \\ z_2^2 \end{bmatrix} = x_1^2z_1^2 + x_2^2z_2^2 + 2x_1x_2z_1z_2
$$

$$
= (x_1z_1 + x_2z_2)^2
$$

$$
= (x \cdot z)^2
$$

d $\Phi(x) \cdot \Phi(z) = K(x, z) = (x \cdot z)^d$

Finally: The Kernel Trick!

maximize_α
$$
\sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)
$$

\n
$$
K(\mathbf{x}_i, \mathbf{x}_j) = \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j)
$$
\n
$$
\sum_i \alpha_i y_i = 0
$$
\n
$$
C \ge \alpha_i \ge 0
$$

- Never represent features explicitly
	- Compute dot products in closed form
- Constant-time high-dimensional dotproducts for many classes of features

$$
\mathbf{w} = \sum_{i} \alpha_i y_i \Phi(\mathbf{x}_i)
$$

$$
b = y_k - \mathbf{w} \Phi(\mathbf{x}_k)
$$

for any k where $C > \alpha_k > 0$

Common Kernels

• Polynomials of degree d

$$
K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d
$$

• Polynomials of degree up to d

$$
K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d
$$

• Gaussian/Radial kernels (polynomials of all orders – recall series expansion of exp)

$$
K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||^2}{2\sigma^2}\right)
$$

• Sigmoid

$$
K(\mathbf{u}, \mathbf{v}) = \tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)
$$

Mercer Kernels

What functions are valid kernels that correspond to feature vectors $\varphi(\mathbf{x})$?

Answer: **Mercer kernels** K

- K is continuous
- K is symmetric
- K is positive semi-definite, i.e. **x**TK**x** ≥ 0 for all **x**

Ensures optimization is concave maximization

Overfitting

- Huge feature space with kernels, what about overfitting???
	- Maximizing margin leads to sparse set of support vectors
	- Some interesting theory says that SVMs search for simple hypothesis with large margin
	- Often robust to overfitting

What about classification time?

- For a new input **x**, if we need to represent $\Phi(\mathbf{x})$, we are in trouble!
- Recall classifier: sign($w.\Phi(x)+b$)

$$
\mathbf{w} = \sum_{i} \alpha_i y_i \Phi(\mathbf{x}_i)
$$

$$
b = y_k - \mathbf{w} \Phi(\mathbf{x}_k)
$$

for any *k* where $C > \alpha_k > 0$

Using kernels we are cool!

$$
K(\mathbf{u}, \mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})
$$

- Choose a set of features and kernel function
- Solve dual problem to obtain support vectors α_i
- At classification time, compute:

$$
\mathbf{w} \cdot \Phi(\mathbf{x}) = \sum_{i} \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i)
$$

$$
b = y_k - \sum_{i} \alpha_i y_i K(\mathbf{x}_k, \mathbf{x}_i)
$$

for any *k* where $C > \alpha_k > 0$

• Iris dataset, 2 vs 13, Linear Kernel

• Iris dataset, 1 vs 23, Polynomial Kernel degree 2

• Iris dataset, 1 vs 23, Gaussian RBF kernel

• Iris dataset, 1 vs 23, Gaussian RBF kernel

• Chessboard dataset, Gaussian RBF kernel

• Chessboard dataset, Polynomial kernel

USPS Handwritten digits

 \Box 1000 training and 1000 test instances

Results: SVM on raw images $\sim 97\%$ accuracy

SVM : **Hinge loss**

 $\cos(f(x_i), y_i) = (1 - (\mathbf{w} \cdot x_i + b)y_i))_+$

Logistic Regression : **Log loss** (-ve log conditional likelihood)

 $\cos(f(x_j), y_j) = -\log P(y_j | x_j, \mathbf{w}, b) = \log(1 + e^{-(\mathbf{w} \cdot x_j + b)y_j})$

Kernels in Logistic Regression

$$
P(Y = 1 | x, w) = \frac{1}{1 + e^{-(w \cdot \Phi(x) + b)}}
$$

• Define weights in terms of features:

$$
\mathbf{w} = \sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i})
$$

$$
P(Y = 1 | x, \mathbf{w}) = \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}) + b)}}
$$

$$
= \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} K(\mathbf{x}, \mathbf{x}_{i}) + b)}}
$$

• Derive simple gradient descent rule on α_i

What you need to know

- Maximizing margin
- Derivation of SVM formulation
- Slack variables and hinge loss
- Relationship between SVMs and logistic regression
	- $-0/1$ loss
	- Hinge loss
	- Log loss
- Tackling multiple class
	- One against All
	- Multiclass SVMs
- Dual SVM formulation
	- $-$ Easier to solve when dimension high d $>$ n
	- Kernel Trick ⁴¹