Learning Theory

Aarti Singh

Machine Learning 10-315 Nov 30, 2020

Slides courtesy: Carlos Guestrin

Learning Theory

- We have explored many ways of learning from data
- But...
 - Can we certify how good is our classifier, really?
 - How much data do I need to make it "good enough"?

A simple setting

- Classification
 - m i.i.d. data points
 - Finite number of possible classifiers in model class (e.g., dec. trees of depth d)
- Lets consider that a learner finds a classifier *h* that gets zero error in training
 - $-\operatorname{error}_{\operatorname{train}}(h) = 0$
- What is the probability that h has more than ε true (= test) error?
 - $-\operatorname{error}_{\operatorname{true}}(h) \geq \varepsilon$

Even if h makes zero errors in training data, may make errors in test

How likely is a bad classifier to get m data points right?

- Consider a bad classifier h i.e. error_{true}(h) $\geq \varepsilon$
- Probability that h gets one data point right $\leq 1 \varepsilon$
- Probability that h gets m data points right

≤ **(1-** ε)^m

How likely is a learner to pick a bad classifier?

- Usually there are many (say k) bad classifiers in model class $h_1, h_2, ..., h_k$ s.t. error_{true} $(h_i) \ge \varepsilon$ i = 1, ..., k
- Probability that learner picks a bad classifier = Probability that some bad classifier gets 0 training error
 Prob(h₁ gets 0 training error OR h₂ gets 0 training error OR ... OR

h_k gets 0 training error)

≤ Prob(h₁ gets 0 training error) +
 Prob(h₂ gets 0 training error) + ... +
 Prob(h_k gets 0 training error)

Union bound Loose but works

≤ k (1-ε)^m

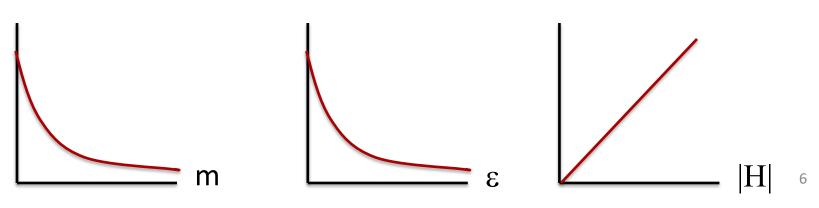
How likely is a learner to pick a bad classifier?

Usually there are many many (say k) bad classifiers in the class

$$h_1, h_2, ..., h_k$$
 s.t. $error_{true}(h_i) \ge \varepsilon$ $i = 1, ..., k$

• Probability that learner picks a bad classifier

 $\leq k (1-\varepsilon)^{m} \leq |H| (1-\varepsilon)^{m} \leq |H| e^{-\varepsilon m}$ $\xrightarrow{} \text{Size of model class}$



PAC (Probably Approximately Correct) bound

Theorem [Haussler'88]: Model class H finite, dataset
 D with m i.i.d. samples, 0 < ε < 1 : for any learned
 classifier h that gets 0 training error:

$$P(\operatorname{error}_{true}(h) \ge \epsilon) \le |H|e^{-m\epsilon} \le \delta$$

• Equivalently, with probability $\geq 1 - \delta$ error_{true}(h) < ϵ

Important: PAC bound holds for all *h* with 0 training error, but doesn't guarantee that algorithm finds best *h*!!!

7

Using a PAC bound $|H|e^{-m\epsilon} \leq \delta$

• Given ε and δ , yields sample complexity #training data, $m \ge \frac{\ln |H| + \ln \frac{1}{\delta}}{\epsilon}$

• Given m and δ , yields error bound

error,
$$\epsilon \ge \frac{\ln|H| + \ln \frac{1}{\delta}}{m}$$

Limitations of Haussler's bound

• Only consider classifiers with 0 training error

h such that zero error in training, $error_{train}(h) = 0$

• Dependence on size of model class |H|

$$m \ge \frac{\ln|H| + \ln\frac{1}{\delta}}{\epsilon}$$

what if |H| too big or H is continuous (e.g. linear classifiers)?

PAC bounds for finite model classes

H - Finite model class

e.g. decision trees of depth k histogram classifiers with binwidth h

With probability
$$\geq 1-\delta$$
,
1) For all $h \in H$ s.t. $\operatorname{error}_{\operatorname{train}}(h) = 0$,
 $\operatorname{error}_{\operatorname{true}}(h) \leq \varepsilon = \frac{\ln |H| + \ln \frac{1}{\delta}}{m}$ Haussler's bounce

۱d

What if our classifier does not have zero error on the training data?

- A learner with zero training errors may make mistakes in test set
- What about a learner with error_{train}(h) ≠ 0 in training set?
- The error of a classifier is like estimating the parameter of a coin!

$$error_{true}(h) := \mathsf{P}(\mathsf{h}(\mathsf{X}) \neq \mathsf{Y}) \equiv \mathsf{P}(\mathsf{H}=1) =: \theta$$
$$error_{train}(h) := \frac{1}{m} \sum_{i} \mathbf{1}_{h(X_i) \neq Y_i} \equiv \frac{1}{m} \sum_{i} Z_i =: \widehat{\theta}$$

Hoeffding's bound for a single classifier

• Consider *m* i.i.d. flips $x_1, ..., x_m$, where $x_i \in \{0, 1\}$ of a coin with parameter θ . For $0 < \epsilon < 1$:

$$P\left(\left|\theta - \frac{1}{m}\sum_{i} x_{i}\right| \ge \epsilon\right) \le 2e^{-2m\epsilon^{2}}$$

• For a single classifier h

 $P(|error_{true}(h) - error_{train}(h)| \ge \epsilon) \le 2e^{-2m\epsilon^2}$

Hoeffding's bound for |H| classifiers

- For each classifier h_i : $P(|error_{true}(h_i) - error_{train}(h_i)| \ge \epsilon) \le 2e^{-2m\epsilon^2}$
- What if we are comparing |H| classifiers?
 Union bound
- Theorem: Model class H finite, dataset D with m i.i.d. samples, 0 < ε < 1 : for any learned classifier h ∈ H:

$$P$$
 (Jerror_{true}(h) - error_{train}(h) \ge \epsilon) \le 2|H|e^{-2m\epsilon^2} \le \delta

Important: PAC bound holds for all h, but doesn't guarantee that algorithm finds best h!!!

Summary of PAC bounds for finite model classes

With probability $\ge 1-\delta$, 1) For all $h \in H$ s.t. $\operatorname{error}_{\operatorname{train}}(h) = 0$, $\operatorname{error}_{\operatorname{true}}(h) \le \varepsilon = \frac{\ln |H| + \ln \frac{1}{\delta}}{m}$

2) For all $h \in H$ $|error_{true}(h) - error_{train}(h)| \le \varepsilon = \sqrt{\frac{\ln |H| + \ln \frac{1}{\delta}}{2m}}$ Hoeffding's bound

Haussler's bound

PAC bound and Bias-Variance tradeoff

 $P(|error_{true}(h) - error_{train}(h)| \ge \epsilon) \le 2|H|e^{-2m\epsilon^2} \le \delta$

• Equivalently, with probability $> 1 - \delta$

$error_{true}(h) \leq$	$error_{train}(h) + \sqrt{1}$	$\left \frac{\ln H + \ln\frac{2}{\delta}}{2m}\right $
Fixed m		
Model class	\downarrow	↓
complex	small	large
simple	large	small

What about the size of the model class? $2|H|e^{-2m\epsilon^2} \le \delta$

• Sample complexity

$$m \ge \frac{1}{2\epsilon^2} \left(\ln|H| + \ln\frac{2}{\delta} \right)$$

• How large is the model class?

Number of decision trees of depth k

Recursive solution:

$$m \geq \frac{1}{2\epsilon^2} \left(\ln|H| + \ln\frac{2}{\delta} \right)$$

Given *n* **binary** attributes H_k = Number of **binary** decision trees of depth k

 $H_0 = 2$

H_k = (#choices of root attribute)

*(# possible left subtrees)

*(# possible right subtrees) = $n * H_{k-1} * H_{k-1}$

Write
$$L_k = \log_2 H_k$$

 $L_0 = 1$
 $L_k = \log_2 n + 2L_{k-1} = \log_2 n + 2(\log_2 n + 2L_{k-2})$
 $= \log_2 n + 2\log_2 n + 2^2\log_2 n + ... + 2^{k-1}(\log_2 n + 2L_0)$
So $L_k = (2^{k}-1)(1+\log_2 n) + 1$

PAC bound for decision trees of depth k

$$m \geq \frac{\ln 2}{2\epsilon^2} \left((2^k - 1)(1 + \log_2 n) + 1 + \log_2 \frac{2}{\delta} \right)$$

- Bad!!!
 - Number of points is exponential in depth k!

• But, for *m* data points, decision tree can't get too big...

Number of leaves never more than number data points

Number of decision trees with k leaves $m \ge \frac{1}{2\epsilon^2} \left(\ln |H| + \ln \frac{2}{\delta} \right)$

- H_k = Number of binary decision trees with k leaves
- H₁ =2
- H_k = (#choices of root attribute) *
 - [(# left subtrees wth 1 leaf)*(# right subtrees wth k-1 leaves)
 - + (# left subtrees wth 2 leaves)*(# right subtrees wth k-2 leaves)
 - + ...

+ (# left subtrees wth k-1 leaves)*(# right subtrees wth 1 leaf)]

$$H_k = n \sum_{i=1}^{k-1} H_i H_{k-i} = \mathsf{n}^{\mathsf{k}-1} \mathsf{C}_{\mathsf{k}-1} \qquad (\mathsf{C}_{\mathsf{k}-1} : \mathsf{Catalan Number})$$

Loose bound (using Sterling's approximation):

$$H_k \le n^{k-1} 2^{2k-1}$$

Number of decision trees

• With k leaves $m \ge \frac{1}{2\epsilon^2} \left(\ln|H| + \ln \frac{2}{\delta} \right)$

 $\log_2 H_k \le (k-1)\log_2 n + 2k - 1$ linear in k number of points m is linear in #leaves

• With depth k

 $\log_2 H_k = (2^k-1)(1+\log_2 n) + 1$ exponential in k number of points m is exponential in depth

PAC bound for decision trees with k leaves – Bias-Variance revisited

With prob $\geq 1-\delta$ error_{true}(h) $\leq \operatorname{error}_{train}(h) + \sqrt{\frac{\ln|H| + \ln \frac{2}{\delta}}{2m}}$

$$\begin{array}{c|c} \text{With } H_k \leq n^{k-1} 2^{2k-1} \text{, we get} \\ \\ \text{error}_{true}(h) \leq \text{error}_{train}(h) + \sqrt{\frac{(k-1)\ln n + (2k-1)\ln 2 + \ln \frac{2}{\delta}}{2m}} \\ & \downarrow & \downarrow \\ \hline \\ k = m & 0 & \downarrow \\ k < m & 0 & \text{large } (\sim > \frac{1}{2}) \\ \text{small } (\sim < \frac{1}{2}) & 21 \end{array}$$

What did we learn from decision trees?

• Moral of the story:

Complexity of learning not measured in terms of size of model space, but in maximum *number of points* that allows consistent classification

Summary of PAC bounds for finite model class

With probability $\geq 1-\delta$,

1) For all $h \in H$ s.t. error_{train}(h) = 0,

error_{true}(h)
$$\leq \varepsilon = \frac{\ln |H| + \ln \frac{1}{\delta}}{m}$$

Haussler's bound

2) For all
$$h \in H$$

|error_{true}(h) - error_{train}(h)| $\leq \varepsilon = \sqrt{\frac{\ln |H| + \ln \frac{1}{\delta}}{2m}}$
Hoeffding's bound