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Learning Theory
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• We have explored many ways of learning from 
data

• But…
– Can we certify how good is our classifier, really?
– How much data do I need to make it “good enough”?



A simple setting
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• Classification
– m i.i.d. data points
– Finite number of possible classifiers in model class 

(e.g., dec. trees of depth d)
• Lets consider that a learner finds a classifier h

that gets zero error in training
– errortrain(h) = 0

• What is the probability that h has more than e
true (= test) error?
– errortrue(h) ≥ e

Even if h makes zero errors in training data, may make errors in test



How likely is a bad classifier to get m 
data points right?
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• Consider a bad classifier h i.e. errortrue(h) ≥ e

• Probability that h gets one data point right

• Probability that h gets m data points right
≤ 1- e

≤ (1- e)m



• Usually there are many (say k) bad classifiers in model class
h1, h2, …, hk s.t. errortrue(hi) ≥ e i = 1, …, k

• Probability that learner picks a bad classifier = Probability 
that some bad classifier gets 0 training error 

How likely is a learner to pick a bad 
classifier?

Prob(h1 gets 0 training error OR 
h2 gets 0 training error OR … OR   
hk gets 0 training error)

≤ Prob(h1 gets 0 training error) +
Prob(h2 gets 0 training error) + … + 
Prob(hk gets 0 training error)

≤   k (1-e)m
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Union 
bound
Loose but 
works



How likely is a learner to pick a bad 
classifier?

• Usually there are many many (say k) bad classifiers in the 
class

h1, h2, …, hk s.t. errortrue(hi) ≥ e i = 1, …, k

• Probability that learner picks a bad classifier

≤   k (1-e)m
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Size of model class

m e |H|

≤   |H| (1-e)m ≤   |H| e-em



PAC (Probably Approximately Correct) 
bound

• Theorem [Haussler’88]: Model class H finite, dataset 
D with m i.i.d. samples, 0 < e < 1 : for any learned 
classifier h that gets 0 training error:

• Equivalently, with probability 
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Important: PAC bound holds for all h with 0 training error, but 
doesn’t guarantee that algorithm finds best h!!!



Using a PAC bound

• Given e and d, yields sample complexity

#training data, 

• Given m and d, yields error bound

error, 
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Limitations of Haussler’s bound
• Only consider classifiers with 0 training error

h such that zero error in training, errortrain(h) = 0

• Dependence on size of model class |H|

what if |H| too big or H is continuous (e.g. linear 
classifiers)?
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PAC bounds for finite model classes

H - Finite model class
e.g. decision trees of depth k

histogram classifiers with binwidth h

With probability ≥ 1-d, 
1)  For all h Î H s.t. errortrain(h) = 0, 

errortrue(h) ≤ e = 
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What if our classifier does not have 
zero error on the training data?

• A learner with zero training errors may make 
mistakes in test set

• What about a learner with errortrain(h) ≠ 0 in training 
set? 

• The error of a classifier is like estimating the 
parameter of a coin!

errortrue(h) := P(h(X) ≠ Y)             P(H=1) =: q

errortrain(h) :=
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Hoeffding’s bound for a single 
classifier

• Consider m i.i.d. flips x1,…,xm, where xi Î {0,1} of 
a coin with parameter q. For 0<e<1:

• For a single classifier h
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Hoeffding’s bound for |H| classifiers

• For each classifier hi:

• What if we are comparing |H| classifiers? 
Union bound 

• Theorem: Model class H finite, dataset D with m i.i.d. 
samples, 0 < e < 1 : for any learned classifier h Î H:

13Important: PAC bound holds for all h, but doesn’t guarantee that 
algorithm finds best h!!!
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Summary of PAC bounds for finite 
model classes

With probability ≥ 1-d, 
1)  For all h Î H s.t. errortrain(h) = 0, 

errortrue(h) ≤ e = 

2) For all h Î H
|errortrue(h) – errortrain(h)| ≤ e = 
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PAC bound and Bias-Variance tradeoff

• Equivalently, with probability 

• Fixed m

Model class
complex
simple
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What about the size of the model 
class?
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• Sample complexity

• How large is the model class?
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Number of decision trees of depth k
Recursive solution: 
Given n binary attributes
Hk = Number of binary decision trees of depth k

2
(#choices of root attribute) 

*(# possible left subtrees) 
*(# possible right subtrees)     = n * Hk-1 * Hk-1

Write Lk = log2 Hk

L0 = 1
Lk = log2 n + 2Lk-1 = log2 n + 2(log2 n + 2Lk-2) 

= log2 n + 2log2 n + 22log2 n + … +2k-1(log2 n + 2L0) 
So Lk = (2k-1)(1+log2 n) +1 17
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Hk = 
H0 = 



PAC bound for decision trees of depth k

• Bad!!!
– Number of points is exponential in depth k!

• But, for m data points, decision tree can’t get too big…

Number of leaves never more than number data points
18
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Number of decision trees with k leaves

Hk = Number of binary decision trees with k leaves
H1 =2
Hk = (#choices of root attribute) *

[(# left subtrees wth 1 leaf)*(# right subtrees wth k-1 leaves) 
+ (# left subtrees wth 2 leaves)*(# right subtrees wth k-2 leaves) 
+ …
+ (# left subtrees wth k-1 leaves)*(# right subtrees wth 1 leaf)] 

= nk-1 Ck-1 (Ck-1 : Catalan Number)

Loose bound (using Sterling’s approximation):
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Number of decision trees
• With k leaves

linear in k
number of points m is linear in #leaves

• With depth k 

exponential in k

number of points m is exponential in depth
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log2 Hk = (2k-1)(1+log2 n) +1

log2 Hk  (k � 1) log2 n+ 2k � 1
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PAC bound for decision trees with k 
leaves – Bias-Variance revisited

k = m 0 large (~ > ½)
k < m >0 small (~ <½)

With prob ≥ 1-d

21

2

Hk  n
k�122k�1With , we get

s
(k � 1) lnn+ (2k � 1) ln 2 + ln 1

�

2m

2



What did we learn from decision trees?

• Moral of the story:

Complexity of learning not measured in terms of size 
of model space, but in maximum number of points
that allows consistent classification
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Summary of PAC bounds for finite 
model class

With probability ≥ 1-d, 
1)  For all h Î H s.t. errortrain(h) = 0, 

errortrue(h) ≤ e = 

2) For all h Î H
|errortrue(h) – errortrain(h)| ≤ e = 
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