Learning Theory

Aarti Singh

Machine Learning 10-315 Dec 2, 2020

Slides courtesy: Carlos Guestrin

Summary of PAC bounds for finite model class

With probability $\geq 1-\delta$,

1) For all $h \in H$ s.t. error_{train}(h) = 0,

error_{true}(h)
$$\leq \varepsilon = \frac{\ln |H| + \ln \frac{1}{\delta}}{m}$$

Haussler's bound

2) For all
$$h \in H$$

|error_{true}(h) - error_{train}(h)| $\leq \varepsilon = \sqrt{\frac{\ln |H| + \ln \frac{2}{\delta}}{2m}}$
Hoeffding's bound

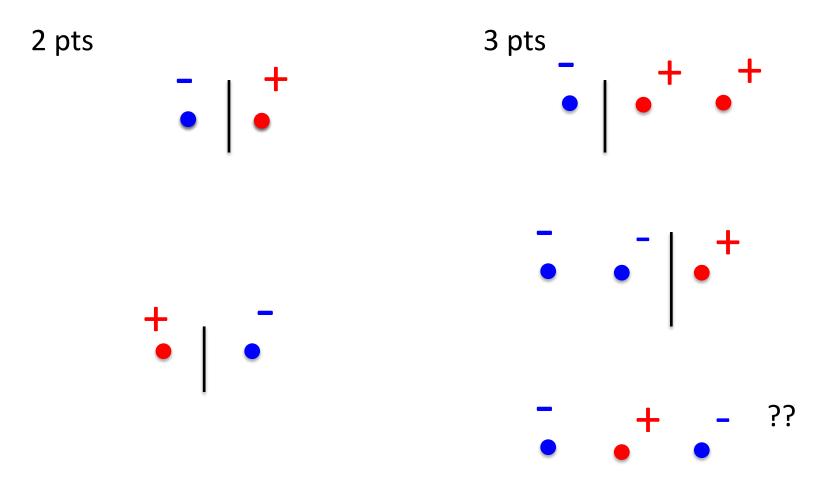
What about continuous hypothesis spaces?

With probability $\geq 1-\delta$,

The probability $\geq 1-\delta$, error_{true}(h) $\leq \operatorname{error}_{train}(h) + \sqrt{\frac{\ln|H| + \ln \frac{2}{\delta}}{2m}}$

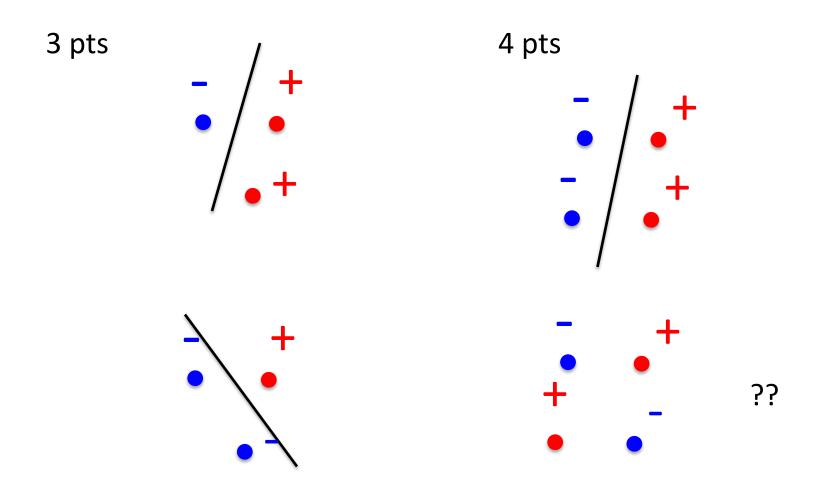
- Continuous model class (e.g. linear classifiers): $-|\mathsf{H}| = \infty$
 - Infinite gap???
- As with decision trees, complexity of model class only depends on maximum number of points that can be classified exactly (and not necessarily its size)!

How many points can a linear boundary classify exactly? (1-D)



There exists placement s.t. all labelings can be classified

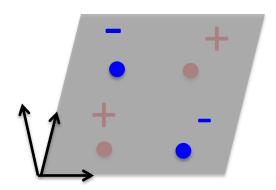
How many points can a linear boundary classify exactly? (2-D)



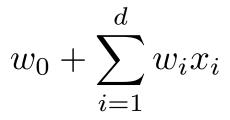
There exists placement s.t. all labelings can be classified

How many points can a linear boundary classify exactly? (d-D)

d+1 pts



How many parameters in linear Classifier in d-Dimensions?



d+1

There exists placement s.t. all labelings can be classified

PAC bound using VC dimension

- Number of training points that can be classified exactly is VC dimension!!!
 - Measures relevant size of hypothesis space, as with decision trees with k leaves

With probability $\geq 1-\delta$,

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + 8\sqrt{\frac{VC(H)\left(\ln\frac{m}{VC(H)} + 1\right) + \ln\frac{8}{\delta}}{2m}}$$
Instead of In [H]

VC dimension

<u>Definition</u>: VC dimension of a hypothesis space H is the maximum number of points such that there exists a hypothesis in H that is consistent with (can correctly classify) any labeling of the points.

- You pick set of points
- Adversary assigns labels
- You find a hypothesis in H consistent with the labels

If VC(H) = k, then for all k+1 points, there exists a labeling that cannot be shattered (can't find a hypothesis in H consistent with it)

PAC bound using VC dimension

- Number of training points that can be classified exactly is VC dimension!!!
 - Measures relevant size of hypothesis space, as with decision trees with k leaves
 - Bound for infinite dimension hypothesis spaces:

w.p. ≥ 1-δ
error_{true}(h) ≤ error_{train}(h)+8
$$\sqrt{\frac{VC(H)\left(\ln \frac{m}{VC(H)}+1\right)+\ln \frac{8}{\delta}}{\int}}$$

linear classifiers
2D large small
10,000 D small large ⁹

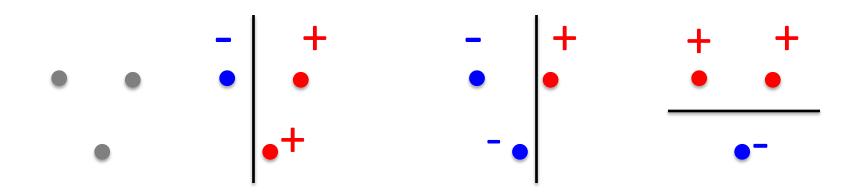
Examples of VC dimension

• Linear classifiers:

- VC(H) = d+1, for *d* features plus constant term

Another VC dim. example - What can we shatter?

• What's the VC dim. of decision stumps in 2D?

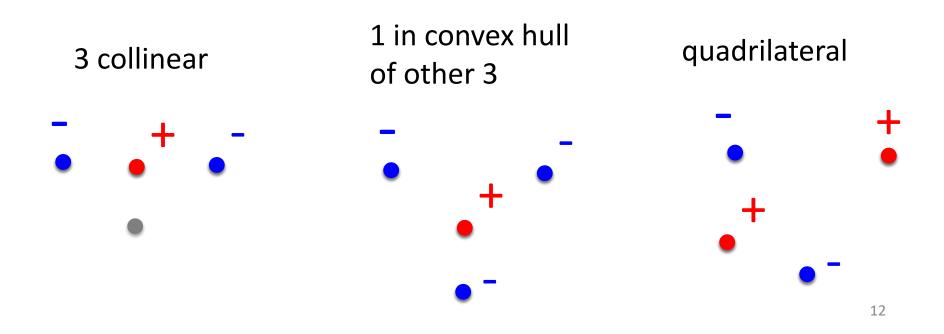


 $VC(H) \ge 3$

Another VC dim. example - What can't we shatter?

What's the VC dim. of decision stumps in 2D?

If VC(H) = 3, then for all placements of 4 pts, there exists a labeling that can't be shattered



Examples of VC dimension

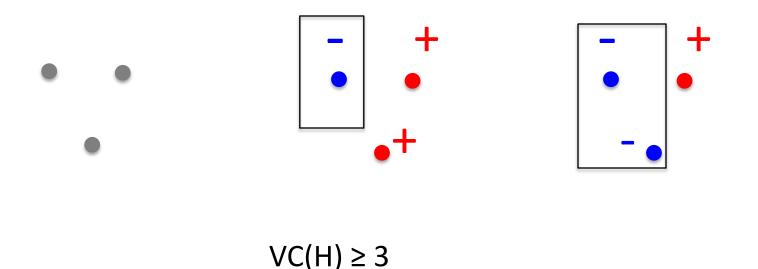
• Linear classifiers:

- VC(H) = d+1, for d features plus constant term

• Decision stumps: VC(H) = d+1 (3 if d=2)

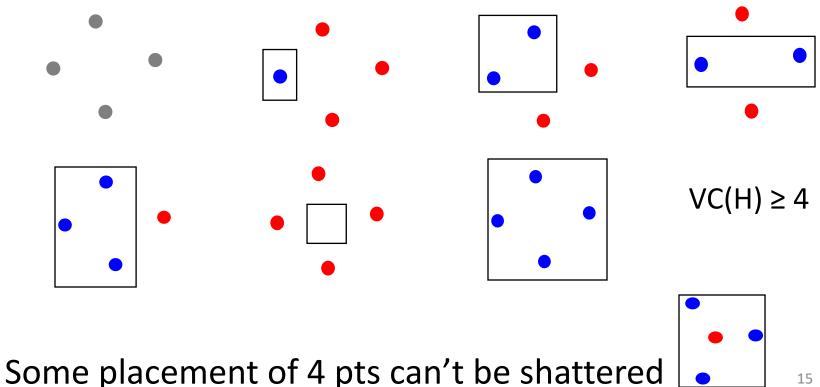
Another VC dim. example - What can we shatter?

 What's the VC dim. of axis parallel rectangles in 2D? sign(1- 2*1_{x ∈ rectangle})



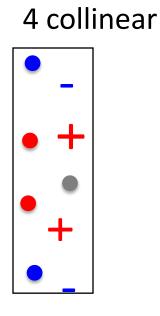
Another VC dim. example - What can't we shatter?

• What's the VC dim. of axis parallel rectangles in 2D? sign(1- $2*\mathbf{1}_{x \in rectangle}$)



Another VC dim. example - What can't we shatter?

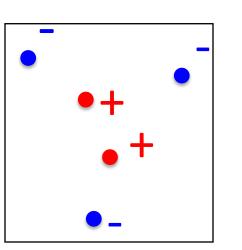
 What's the VC dim. of axis parallel rectangles in 2D? sign(1- 2*1_{x ∈ rectangle})
 If VC(H) = 4, then for all placements of 5 pts, there exists a labeling that can't be shattered

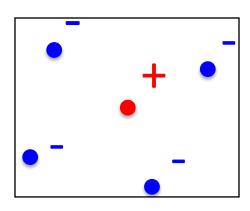


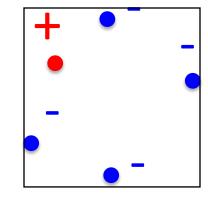
2 in convex hull of other 3

1 in convex hull of other 4

pentagon







Examples of VC dimension

- Linear classifiers:
 - VC(H) = d+1, for *d* features plus constant term

- Decision stumps: VC(H) = d+1
- Axis parallel rectangles: VC(H) = 2d (4 if d=2)

• 1 Nearest Neighbor: $VC(H) = \infty$

VC dimension and size of hypothesis space

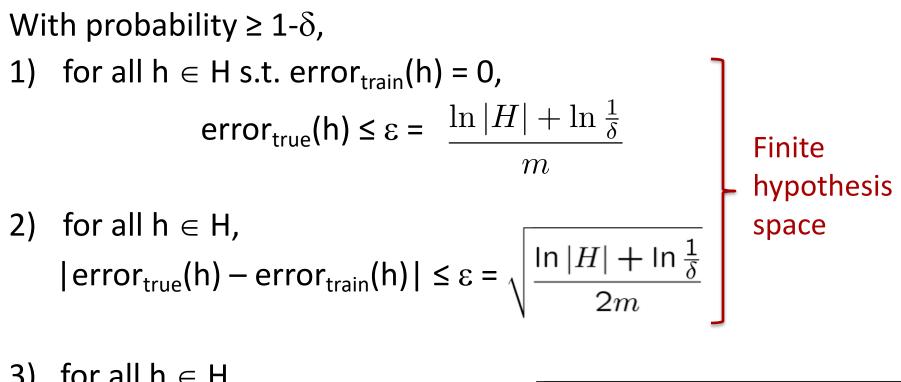
To be able to shatter m points, how many hypothesis do we need?
 2^m labelings ⇒ |H|≥ 2^m

Given |H| hypothesis can hope to shatter max m=log₂|H| points

 $VC(H) \le \log_2 |H|$

So VC bound is tighter.

Summary of PAC bounds



3) for all $h \in H$, $|error_{true}(h) - error_{train}(h)| \le \varepsilon = 8\sqrt{\frac{VC(H)\left(\ln\frac{m}{VC(H)} + 1\right) + \ln\frac{8}{\delta}}{2m}}$

Infinite hypothesis space

Limitation of VC dimension

• Hard to compute for many hypothesis spaces

VC(H) ≥ lower bound (easy)
VC(H) = ... (HARD!)
For all placements of VC(H)+1 points, there exists a labeling
that can't be shattered

• Too loose for many hypothesis spaces

linear SVMs, VC dim = d+1 (d features) kernel SVMs, VC dim = ??

= ∞ (Gaussian kernels)

Deep Neural nets, VC dim = very large Suggests Gaussian kernels and deep nets are really BAD!! But contradicts practice!²⁰

What you need to know

- PAC bounds on true error in terms of empirical/training error and complexity of hypothesis space
- Complexity of the classifier depends on number of points that can be classified exactly
 - Finite case Number of hypothesis
 - Infinite case VC dimension

Other bounds – Rademacher complexity (data dependent), Margin based (complexity low if margin achieved high), Mistake bounds, ...