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Summary of PAC bounds for finite
model class

With probability > 1-0,
1) Forall h € Hs.t. error,,(h) =0,
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Hoeffding’s bound




What about continuous hypothesis
spaces?

With probability > 1-9,
errortrue(h) < errortrain(h) + \

In|H| 4 In
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e Continuous model class (e.g. linear classifiers):
SLIEE:
— Infinite gap???

* As with decision trees, complexity of model
class only depends on maximum number of

points that can be classified exactly (and not
necessarily its size)!



How many points can a linear
boundary classify exactly? (1-D)

2 pts 3 pts

There exists placement s.t. all labelings can be classified



How many points can a linear
boundary classify exactly? (2-D)
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There exists placement s.t. all labelings can be classified



How many points can a linear
boundary classify exactly? (d-D)

d+1 pts
= + How many parameters in linear
O ® Classifier in d-Dimensions?
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There exists placement s.t. all labelings can be classified



PAC bound using VC dimension

 Number of training points that can be classified
exactly is VC dimension!!!

— Measures relevant size of hypothesis space, as with
decision trees with k leaves

With probability > 1-9,
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VC dimension

Definition: VC dimension of a hypothesis space H is the
maximum number of points such that there exists a
hypothesis in H that is consistent with (can correctly classify)
any labeling of the points.

* You pick set of points O -
* Adversary assigns labels + _
* You find a hypothesis in H consistent with the labels @ o

If VC(H) =k, then for all k+1 points, there exists a labeling that
cannot be shattered (can’t find a hypothesis in H consistent with it)
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PAC bound using VC dimension

 Number of training points that can be classified

exactly is VC dimension!!!

— Measures relevant size of hypothesis space, as with
decision trees with k leaves

— Bound for infinite dimension hypothesis spaces:

w.p. = 1-0

errOrtfrue(h) S errortraz’n(h)+8

linear classifiers
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Examples of VC dimension

* Linear classifiers:

— VC(H) = d+1, for d features plus constant term
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Another VC dim. example - What can
we shatter?

 What’s the VC dim. of decision stumps in 2D?
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VC(H) > 3
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Another VC dim. example - What
can’t we shatter?

 What’s the VC dim. of decision stumps in 2D?

If VC(H) = 3, then for all placements of 4 pts, there exists a
labeling that can’t be shattered

1 in convex hull
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Examples of VC dimension

* Linear classifiers:

— VC(H) = d+1, for d features plus constant term

* Decision stumps: VC(H)=d+1 (3 if d=2)
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Another VC dim. example - What can
we shatter?

 What’s the VC dim. of axis parallel rectangles
In ZD? Sign(l' 2>|<1x c rectangle)
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Another VC dim. example - What
can’t we shatter?

 What’s the VC dim. of axis parallel rectangles
In ZD? Sign(l' 2>|<1x c rectangle)
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* Some placement of 4 pts can’t be shattered | o 15




Another VC dim. example - What
can’t we shatter?

 What’s the VC dim. of axis parallel rectangles
In ZD? Sign(l' 2>|<1x c rectangle)

If VC(H) = 4, then for all placements of 5 pts, there exists a
labeling that can’t be shattered

4 collinear 2 in convex hull 1 in convex hull pentagon
o of other 3 of other 4
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Examples of VC dimension

* Linear classifiers:

— VC(H) = d+1, for d features plus constant term
* Decision stumps: VC(H) =d+1
* Axis parallel rectangles: VC(H)=2d (4if d=2)

* 1 Nearest Neighbor:  vc(H) = e
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VC dimension and size of hypothesis
space

* To be able to shatter m points, how many
hypothesis do we need?

2™ [abelings = |[H[=2m

Given |H| hypothesis can hope to shatter max
m=log, |H| points

VC(H) < log, |H|

So VC bound is tighter.

18



Summary of PAC bounds

With probability = 1-0,

1) forallh € Hs.t. error,,,(h) =0, )
_ In|H|+Ini
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Infinite hypothesis space



Limitation of VC dimension

* Hard to compute for many hypothesis spaces

VC(H) = lower bound (easy)

VC(H) =... (HARD!)
For all placements of VC(H)+1 points, there exists a labeling
that can’t be shattered

* Too loose for many hypothesis spaces

linear SVMs, VC dim = d+1 (d features)
kernel SVMs, VC dim = ??

= oo (Gaussian kernels)
Deep Neural nets, VC dim = very large

Suggests Gaussian kernels and deep nets are really BAD!! But
contradicts practice!
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What you need to know

* PAC bounds on true error in terms of empirical/training
error and complexity of hypothesis space

 Complexity of the classifier depends on number of
points that can be classified exactly

— Finite case — Number of hypothesis
— Infinite case — VC dimension

Other bounds — Rademacher complexity (data
dependent), Margin based (complexity low if margin
achieved high), Mistake bounds, ...





