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1 Kernel Ridge Regression

1.1 Conceptual Recap

1. Is kernel regression a parametric or nonparametric model? Explain.

It is a nonparametric model. The kernel is applied to each data point, so the number of parameters
increase as the number of data points increase.

2. Consider the RBF kernel, k(x, x(i)) = e−γ‖x−x
(i)‖22 . Match the models below with their corresponding

γ values (0.01 or 100). What is the effect of γ on overfitting?

The left model corresponds to γ = 100, while the right corresponds to γ = 0.01. When γ grows too
large, the model is likely to overfit.
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1.2 Kernelize it!

Recall the process for kernel regression:

Step 1: Compute α = (K + λI)−1y where: Kij = k(x(i), x(j)) and k is your kernel.

Step 2: Given a new point x, predict ŷ =
∑N
i=1 αik(x, x(i))

For this question, consider the box kernel:

k(x, x(i)) =

{
1 ‖x− x(i)‖22 ≤ 1

2

0 otherwise

You are given the following 1D data points (x,y): (3,4), (3.7,1), (4.2,-2). a)a)

3. Find K and calculate α. For simplicity, let λ = 0. You can use an online inverse matrix
calculator.

K (3x3):

1 1 0
1 1 1
0 1 1

, where K−1 (3x3): [r]01− 1

1− 11
− 110

y (3x1): [4, 1, -2]

With γ = 0, we get α (3x1): K−1y = [r]01− 1
1− 11
− 110 [4, 1, -2] = [3, 1, -3]

4. Predict ŷ for x = 3.4.

ŷ =
∑3
i=1 αik(3.4, x(i))

= α1k(3.4, 3) + α2k(3.4, 3.7) + α3k(3.4, 4.2)

= 3*1 + 1*1 + (-3)*0

= 4
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2 A Quick Intro to Constrained Optimization

The following example is taken from http://people.brunel.ac.uk/ mastjjb/jeb/or/morelp.html

Suppose a company makes two products (xylophones and yo-yos) using two machines (A and B). Each
xylophones that is produced requires 50 minutes processing time on machine A and 30 minutes processing
time on machine B. Each yo-yo that is produced requires 24 minutes processing time on machine A and 33
minutes processing time on machine B.

At the start of the current week there are 30 xylophones and 90 yo-yos stock. Available processing time
on machine A is forecast to be 40 hours and on machine B is forecast to be 35 hours.

The demand for xylophones in the current week is forecast to be 75 units and for yo-yos is forecast to
be 95 units. Company policy is to maximise the combined sum of the number of xylophones and yo-yos at
the end of the week.

Formulate the problem of deciding how much of each product to make in the current week.

Let x be the number of xylophones produced in the current week, and let y be the number of xylophones
produced in the current week.

We find the constraints:
50x+ 24y ≤ 40 · 60 machine A time
30x+ 33y ≤ 35 · 60 machine B time
x ≥ 75− 30 (so production of xylophones is at least demand minus initial stock)
y ≥ 95− 90 (so production of yo-yos is at least demand minus initial stock)
The objective is: max(x+ 30− 75) + (y+ 90− 95) = x+ y− 50 (maximizes the number of units left in stock
at the end of the week)
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Formulate the previous problem using vectors and matrices:

maxx+ y − 50

s.t.

(
50 24
30 33

)(
x
y

)
≤
(

2400
2100

)
,

(
x
y

)
≥
(

45
5

)

More generally, we can say this problem has the following form:
max cTx
s.t. Ax ≤ b,x ≥ 0 (note that we can drop the −50 from the objective)

So now we have a concise, generalized way of expressing optimization problems. Refer to page 13 of the
slides from October 28 to see the SVM optimization problem statement.

3 Duals

Motivating idea: for every maximization problem satisfying some certain set of criteria, there exists a corre-
sponding minimization problem with the same optimal solution.
Using the above formulation, we write the dual as:
minbTy
s.t. ATy ≥ c,y ≥ 0

We can think of these problems are quasi-inverses/transposes of each other.

Some important theorems:
Let (P ) be a maximization problem and (D) its corresponding dual.
Weak Duality: any feasible solution to (P ) has value less than or equal to the value of any feasible solution
to (D).
Strong duality: If the objective to (P ) is convex, (P ) has linear constraints, and (P ) is feasible, then the
optimal solutions to (P ) and (D) have the same value.
Slater’s condition: if (P ) has a point that is strictly feasible, then strong duality holds (Slater point).

We introduced these formulations with the objectives being linear combinations of the variables, but in
practice this need not always be true.
Note also that when strong duality holds, we have that x and y are respectively primal and dual feasible
(this is because they are valid solutions to their own problems).

Complementary Slackness: At the optimal solution, we have that for every value xi in x, either xi = 0
or the constraint corresponding to xi in (D) is tight (active). Similarly, we also have that for every value yj
in y, either yj = 0 or the constraint corresponding to yj in (P ) is tight (active).
Why is this true?

Suppose x and y are optimal for (P ) and (D). Then we know cTx = bTy
But by weak duality we know cTx ≤ yTAx ≤ yTb
So bTy = yTAx
Note that bTy is a scalar, so we can write bTy = yTb
⇒ yT (Ax− b) = 0.
Reading off the individual rows, we see this gives us the complementary slackness conditions.
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4 Support Vector Machines

Assume we are given dataset D = {(xi, yi)}ni=1, where xi ∈ Rd and yi ∈ {+1,−1}.
In SVM the goal is to find some hyperplane which separates the positive from the negative examples, such
that the margin (the minimum distance from the decision boundary to the training points) is maximized.
Let the equation for the hyperplane be wTx + b = 0.

1. You are presented with the following set of data (triangle = +1, circle = −1):

Find the equation of the hyperplane wTx + b = 0 that would be used by an SVM classifier. Which
points are support vectors?

Support vectors are circled.

2. Let’s try to measure the width of the SVM slab (we assume that it was fitted to linearly separable
data). We can do this by measuring the distance from one of the support vectors, say x+ , to the plane
wTx + b = 0 Since the equation of the plane is wTx + b = 0 and since cwTx + b = 0 defines the same
plane, we have the freedom to choose the normalization of w. Let us choose normalization such that
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wTx+ + b = +1 and wTx− + b = −1, for the positive and negative support vectors respectively. Show
that the width of an SVM slab with linearly separable data is 2

||w|| .

Let d+ denote the margin from x+ to the plane wTx + b = 0. Let d− denote the margin from x− to
the plane. The width then can be written as:

width = d+ + d−

=
wTx+

||w||
+ b− wTx−

||w||
− b (Project x to w, normalize and translate)

=
wTx+

||w||
− wTx−
||w||

=
1− b
||w||

− −1− b
||w||

(Since both x+ and x− are support vectors)

=
1

||w||
((1− b)− (−1− b))

=
2

||w||

Thus we’ve proved that the width is 2
||w||

3. Write SVM as an optimization problem. Conclude that maximizing the margin is equivalent to min-
imizing ||w||. In other words, write the SVM as some maxw,b

2
||w|| with certain constraints and show

that the maximization problem implies minw,b||w|| on some constraints.

The main idea for SVM is to find a linear separator with a maximum margin. Using what we’ve proved
in b), we can write SVM as follows:

maxw,b
2

||w||
s.t.y(i)(wTx(i) + b) ≥ 1 ∀i

By inverting the objective function, we get the following equivalent optimization problem:

minw,b
||w||

2

s.t.y(i)(wTx(i) + b) ≥ 1 ∀i

Note that in the constraint the x(i)s are not only the support vectors, but every data point.

4. Will moving points which are not support vectors further away from the decision boundary effect the
SVM’s the w and b returned by the SVM optimization?

No. Since SVM only compute w and b based on support vectors, which are positive and negative
samples that lie on the margin.
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5 LaGrange Multipliers

Solve the following constrained optimization problem:

min
x,y

f(x, y) = x2 + y2

Subject to
g(x, y) = 0

where
g(x, y) = x+ y − 1

We use the method of LaGrange Multipliers and explain some intuition for why it works at the end.

We introduce the LaGrangian L(x, y, λ) = f(x, y)− λg(x, y)

The gradient is then ∇L(x, y, λ) = ∇f(x, y)−∇λg(x, y)

We then set equal to 0 and solve the system:

∂L

∂x
= 0

∂L

∂y
= 0

∂L

∂λ
= 0

This then give us the system:

2x− λ = 0

2y − λ = 0

x+ y = 1

Solving the resulting system gives us the optimum at x = 1
2 , y = 1

2
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5.1 Geometric Intuition for LaGrange Multipliers

Consider the previous problem. The main observation for why LaGrange multipliers work is to see that the
minimum of f(x, y) under the constraint g(x, y) occurs when their gradients are parallel.
Geometrically, we have the following contour plot:

The circles are the contours of the objective function f(x, y) = x2 + y2 with darker colors signalling smaller
values. The line in the top right is the constraint g(x, y) = y = 1 − x. Black arrows signal the gradi-
ent of f(x, y) and white arrows signal the gradient of g(x, y). The claim is that the middle point, where the
gradients are parallel (in the same direction in this case), is the minimum of the objective under the constraint.

To see this, suppose you start at the leftmost point (on the line labelled with the 3 points and gradients) Say
that the objective function evaluated at this point gives us some value v.

You would like to go left, but then you see that the gradient of the objective function is pointing towards the
left (remember it is always pointing towards greater values) so it might not be a good idea. To be sure, you
try and go to the left. You find out that the objective function returns some value x > v, so it is increasing
which is not okay. Going to the right, this time, the objective function returns smaller values, it is good you
are going in the correct direction. So you continue like that until you reach the center point where the two
arrows are parallel. But then, once you move a little bit to the right you find out that the objective function
is increasing again. As you can not move right or left anymore without increasing the objective function, you
conclude this point is the minimum.

Finally, how does λ come into play? We know that the minimum occurs where the gradients are in the same
direction. But their magnitudes may be different. Thus, λ is the factor where ∇f(x, y) = λ∇g(x, y) and
g(x, y) = 0.
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For a more in-depth look please see https://www.svm-tutorial.com/2016/09/duality-lagrange-multipliers.
Credit is given to this website as well for the problem and explanation.

We have now seen the four KKT conditions for strong duality:

1. Solution to the primal is feasible.
2. Solution to the dual is feasible.
3. Solutions satisfy complementary slackness.
4. Gradient of the LaGrangian at optimal solutions is zero.

These conditions are good to know since they apply for non-linear optimization problems as well, so they
give us a nice way to check for optimality. Specifically, since SVM is an instance of Quadratic Programming
(QP), we can use them to verify optimality to a solution for SVM.

6 Return to SVM

We have the primal formulation:
minw,b

1
2w ·w such that ∀ j, (w · x+ b)yj ≥ 1

This time, we’ll set up the Lagrangian dual. To do this, attempt to solve the primal problem using La-
grange multipliers. To formulate this as the dual, interpret each Lagrange multiplier as a dual variable, and
maximize the resulting expression over the dual variables such that each dual variable is non-negative.

Using the Lagrangian, we formulate the dual:
maxα minw,b L(w, b, α)
= maxα minw,b

1
2w ·w −

∑
j αj [(w · xj + b)yj − 1], αj ≥ 0
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Kernel Trick

Suppose we have feature vectors x =
(
x1 x2 x3

)T
and y =

(
y1 y2 y3

)T
. If we were using an SVM, we

would want to (1) broadcast these into a higher dimensional space and (2) take the resulting dot product.

Suppose wanted to broadcast the vectors to polynomials of degree 2. What would the resulting x and y
vectors look like? How many steps would be involved in computing x · y?

extend x to
(
x1 x2 x3 x1x2 x2x3 x1x3 x21 x22 x23

)
and likewise we do the same to y.

To compute x · y would require we compute 9 products and take their sum.

However, notice that x · y = (1 + x1y1 + x1y2 + x3y3)2. This computation requires four products and one
sum. While in one example this isn’t a huge speedup, in practice this can be extremely valuable.

Recall the formulation for SVM:

maxα
∑
i αi −

1
2

∑
i,j αiαjyiyjxi · xj such that

∑
i αiyi = 0, αi ≥ 0

How many dot products do we do each time we compute the objective value?

We see that we do i× j many dot products every time we compute the objective value. Clearly, for a large
data set, we will need a fast way to compute the dot product xi · xj .

Now suppose we have a data set with 10 features, and we wish to use polynomial features of degree 3. How
many features are in the new data set? How many multiplication operations does it take to compute the dot
product of two data vectors?

1,000 features in the broadcast data set. To compute a single dot product requires 1,000 multiplica-
tions.

Now suppose we use the kernel trick. How many multiplications do we do now?

With the kernel trick, computing the product only takes 12 multiplications ((x1y1 + ... + x10y10)3, one for
each value and one for the cubing). Using the kernel trick, we’ve reduced our multiplications from 1,000 to 12.

More generally, if we have n features and we wish to use polynomial degree p, we have np features in
the broadcast data set. Computing the dot product requires we add the product of every pair of features,
meaning we need to do out np multiplications. However, using the kernel trick reduces this to n + (p − 1)
computations. So using the kernel trick changes this computation from being O(np) to being O(n).

Interesting consequence: we never write out the new, higher dimensional features anywhere.
Why SVMs work; Occam’s Razor.
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