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1 Calculus

We all are comfortable with single-variable calculus(I hope).

Most often we will be dealing with multi-variable scalar valued functions f : Rn → R. Their
derivative Df is defined as the gradient:

Definition 1.1. Gradient ∇ If f : Rn → R (is sufficiently nice) then we have the gradient
as the derivative

∇f = 〈 ∂f
∂x1

, ...,
∂f

∂xn
〉

ie. its just a list of single variable derivatives in the direction of the axes. Note this is a
vector when evaluated at a point.

Ex: Square l2 norm

Definition 1.2. Square l2 norm For x ∈ Rn define the square l2 norm of x, denoted ||x||22 as

||x||22 =
∑

x2i

1. What is the gradient of the ||x||22 at arbitrary x ∈ Rn?

Compute the ith partial ∂f
∂xi

(x) = 2xi so the gradient is

∇f(x) = 〈2x1, .., 2xn〉

Definition 1.3. Hessian H For (sufficiently nice) f : Rn → R define the hessian of f(D2f)
as 

∂2f
∂x1∂x1

. . . ∂2f
∂x1∂xn

...
...

...
∂2f

∂xn∂x1
. . . ∂2f

∂xn∂xn


The ith column can be thought of as the gradient of the ith coordinate of the gradient of f.
Note this is a matrix when evaluated at a point, and in any situation we will encounter the
partial will commute, ie. ∂1∂2f = ∂2∂1f so it is symmetric.

Ex:
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1. What is the Hessian of the ||x||22? at arbitary x ∈ Rn

We already computed the gradient. So to compute the hessian we may just compute
each column, ie. the gradient of each component of ∇f .

Recall (∇f(x))i = 2xi. This has gradient

〈0, ..., 2, ..., 0〉

where the ith coordinate is nonzero. This implies the hessian is


2 0 0 . . .
0 2 0 . . .
...

...
...

...
0 . . . 0 2


Alternatively we could have just computed ∂i∂jf which is 2 for very i,j.

Moral: If you can do single-variable calculus you can do multivariable calculus.(At least in
this class).

2 Convexity

Now we address an extremely nice class of functions: those which are convex.

Definition 2.1. Convex Fuctions f : Rn → R is convex if ∀t ∈ [0, 1], x, y ∈ Rn,

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

Also (erroneously) known as ”concave-up”.

Geometry of convex functions in one dimension:

In n-dimensions:
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In a very strong sense sub-linear, ie. overapproximated by its gradient.

An equivalent definition(for sufficiently differentiable functions) requires the hessian of f to
be positive semi-definite

Definition 2.2. Convex Fuctions f : Rn → R is convex for all x ∈ Rn the hessian Hf(x) is
positive semi-definite.

Definition 2.3. Positive Semi-Definite Matrix A matrix H ∈ Rn×n is positive semi definite
if for all x ∈ Rn, xTHx ≥ 0

(The bilinear form induced by H satisfies positivity). We mentioned in our discussion of
hessians that our hessians will almost always be symmetric. In the case of a symmetric
matrix we have the following equivalence

Theorem 1. Symmetric Positive Semi-Definite Matrices If H ∈ Rn×n symmetric then it is
positive semi-definite ⇐⇒ all its eigenvalues are ≥ 0.

Proof. Not super relevant but a good exercise/refresher in linear algebra. If you get stuck
can find on math stack exchange.

This condition is often easier to check and thus good to know.

Further note that in one dimension showing convexity amounts to showing f ′′(x) ≥ 0.

2.1 Determining if a Function is Convex

Ex:

1. Show f(x) = ||x||22 is convex

Recall the hessian of f is
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2 0 0 . . .
0 2 0 . . .
...

...
...

...
0 . . . 0 2


Note it has only one eigenvalue, 2. And 2 ≥ 0 so we know f convex.

Alternatively for x ∈ Rn, xTHx = xT2x = 2xTx ≥ 0 since xTx ≥ 0. This shows the
definition directly

There are many other methods of showing convexity:

Theorem 2. If f, g are convex then f + g convex.

Proof. Linearity of the derivative.

Theorem 3. If f convex then αf convex for α ∈ R+.

Proof. Linearity of the derivative.

In the one-dimensional case f, g : R→ R:

Theorem 4. If f and g are convex functions and g is non-decreasing, then g(f(x)) is convex.

Proof. Chain rule

Theorem 5. If f is concave and g is convex and non-increasing then g(f(x)) is convex

Proof. Chain rule

2.2 Nice Properties of Convexity

Often in machine learning we are seeking to minimize some objective function/error function
f : Rn → R in order to get a best fit for our model. In general this is very hard even if
f is sufficiently differentiable(there could be many local minima/maxima, but we want the
global).

However if our objective f is convex then we can find the extrema easily!

Ex:

1. Classify the extrema of f(x) = ||x||22 on Rn

Recall that if x0 is a minimum or maximum then ∇f(x0) = 0. So if ∇f(x0) =
〈2x1, ..., 2xn〉 = 0 it must be x0 = 0 is a unqiue extrema!(In this unconstrained problem).
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2. What does the hessian H of f tell us about the extrema at x0 = 0

f(x0) = f(0) = 0 must be a global minimum, since Hf(x0) > 0. This is obvious but I’m
trying to demonstrate a more general principle.

Theorem 6. Suppose x0 ∈ Rn is s.t. ∇f(x0) = 0. Then x0 is a local minimum for f if
Hf(x0) > 0. Further it is a local maximum if Hf(x0) < 0.

In the single variable case this goes by the second derivative test:

Theorem 7. Suppose x0 ∈ Rn is s.t. f ′(x0) = 0. Then x0 is a local minimum for f if
f ′′(x0) > 0. Further it is a local maximum if f ′′(x0) < 0.

So this immediately tells us that all convex functions must have only minima. Furthermore
all convex funcions have a unique global minimum if one exists. We can show this
clearly in the single variable case:

1. Let f : R→ R be convex and twice differentiable. Argue if it has a minima, it is unique.

Recall for any extrema z, f ′(z) = 0. Further since f ′′(x) ≥ 0 for all x we know f ′ is
nondecreasing and hence by IVT has at most one f ′(z) = 0 occurs at most once. Further
it must be a minima as f is convex and f ′′(z) ≥ 0.

To find the global minimizer of a convex function f set ∇f(x) = 0 and solve.
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