RECITATION 1
ELEMENTS OF THE GOOD LIFE: CALCULUS AND CONVEXITY
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Fall 2020

1 Calculus

We all are comfortable with single-variable calculus(I hope).

Most often we will be dealing with multi-variable scalar valued functions f : R™ — R. Their
derivative D f is defined as the gradient:

Definition 1.1. Gradient V If f : R™ — R (is sufficiently nice) then we have the gradient
as the derivative
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ie. its just a list of single variable derivatives in the direction of the axes. Note this is a
vector when evaluated at a point.

Ex: Square [? norm

Definition 1.2. Square [? norm For x € R" define the square [ norm of x, denoted ||z||3 as

]l =«
1. What is the gradient of the ||x||3 at arbitrary z € R"?

Compute the ith partial %(1) = 2x; so the gradient is

Vf(z)=(22,..,2x,)

Definition 1.3. Hessian H For (sufficiently nice) f : R® — R define the hessian of f(D?f)

as
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The ith column can be thought of as the gradient of the ith coordinate of the gradient of f.
Note this is a matrix when evaluated at a point, and in any situation we will encounter the
partial will commute, ie. 0105 f = 00, f so it is symmetric.

Ex:
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1. What is the Hessian of the ||z||3? at arbitary z € R"

We already computed the gradient. So to compute the hessian we may just compute
each column, ie. the gradient of each component of Vf.

Recall (Vf(z)); = 2x;. This has gradient

2 0 0
0 2 0
0 .0 2

Alternatively we could have just computed 9;0; f which is 2 for very i,j.

Moral: If you can do single-variable calculus you can do multivariable calculus.(At least in
this class).

2 Convexity

Now we address an extremely nice class of functions: those which are convez.

Definition 2.1. Convex Fuctions f : R™ — R is convex if Vt € [0,1], z,y € R™,

flz+ 1 —t)y) <tf(x)+(1—1t)f(y)

Also (erroneously) known as ”concave-up”.
Geometry of convex functions in one dimension:

f(@)

tf (1) + (L=0)f (22)

f iz + (1 —t)ws) >

Ty toy + (1 —t)a T3

In n-dimensions:
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In a very strong sense sub-linear, ie. overapproximated by its gradient.

An equivalent definition(for sufficiently differentiable functions) requires the hessian of f to
be positive semi-definite

Definition 2.2. Convex Fuctions f : R" — R is convex for all z € R" the hessian H f(z) is
positive semi-definite.

Definition 2.3. Positive Semi-Definite Matrix A matrix H € R™*" is positive semi definite
if for all z € R*, 2T Ha >0

(The bilinear form induced by H satisfies positivity). We mentioned in our discussion of
hessians that our hessians will almost always be symmetric. In the case of a symmetric
matrix we have the following equivalence

Theorem 1. Symmetric Positive Semi-Definite Matrices If H € R™*" symmetric then it is

positive semi-definite <= all its eigenvalues are > 0.

Proof. Not super relevant but a good exercise/refresher in linear algebra. If you get stuck
can find on math stack exchange. O]

This condition is often easier to check and thus good to know.

Further note that in one dimension showing convexity amounts to showing f”(x) > 0.

2.1 Determining if a Function is Convex
Ex:
1. Show f(z) = ||z||3 is convex

Recall the hessian of f is
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Note it has only one eigenvalue, 2. And 2 > 0 so we know f convex.

Alternatively for x € R*, 2T Hx = 2722 = 2272 > 0 since 272 > 0. This shows the
definition directly

There are many other methods of showing convexity:

Theorem 2. If f, g are convex then f + g convex.
Proof. Linearity of the derivative. ]
Theorem 3. If f convex then af convex for a € RY.

Proof. Linearity of the derivative. m

In the one-dimensional case f,g: R — R:

Theorem 4. If f and g are convex functions and g is non-decreasing, then g(f(z)) is convex.
Proof. Chain rule m
Theorem 5. If f is concave and g is convex and non-increasing then g(f(x)) is convex

Proof. Chain rule O

2.2 Nice Properties of Convexity

Often in machine learning we are seeking to minimize some objective function/error function
f :R" — R in order to get a best fit for our model. In general this is very hard even if
f is sufficiently differentiable(there could be many local minima/maxima, but we want the
global).

However if our objective f is convex then we can find the extrema easily!
Ex:
1. Classify the extrema of f(z) = ||z||3 on R"

Recall that if zo is a minimum or maximum then Vf(xzy) = 0. So if Vf(zg) =
(2x1, ..., 2x,) = 0 it must be zo = 0 is a unqiue extremal(In this unconstrained problem).
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2. What does the hessian H of f tell us about the extrema at xqg =0

f(zo) = f(0) = 0 must be a global minimum, since H f(x¢) > 0. This is obvious but I'm
trying to demonstrate a more general principle.

Theorem 6. Suppose o € R" is s.t. Vf(xg) = 0. Then z; is a local minimum for f if
H f(zo) > 0. Further it is a local maximum if H f(xy) < 0.

In the single variable case this goes by the second derivative test:

Theorem 7. Suppose o € R" is s.t. f'(z9) = 0. Then zj is a local minimum for f if
f"(x) > 0. Further it is a local maximum if f”(zq) < 0.

So this immediately tells us that all convex functions must have only minima. Furthermore
all convex funcions have a unique global minimum if one exists. We can show this
clearly in the single variable case:

1. Let f : R — R be convex and twice differentiable. Argue if it has a minima, it is unique.

Recall for any extrema z, f'(z) = 0. Further since f”(x) > 0 for all x we know f’ is
nondecreasing and hence by IVT has at most one f’(z) = 0 occurs at most once. Further
it must be a minima as f is convex and f”(z) > 0.

To find the global minimizer of a convex function f set V f(z) = 0 and solve.
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