
Recitation 4
Linearity: The Only Thing Better Than Convexity

10-315: Introduction to Machine Learning

Fall 2020

1 Linear Algebra

Definition 1.1. A matrix is an object M ∈ Rm×n representing a linear transformation from
Rn → Rm.

Recall a function is linear if

Definition 1.2. For vector spaces V,W, f : V → W is linear if f(ax + by) = af(x) + bf(y)
for all a, b ∈ R and x, y ∈ V .

Recall vector spaces are collections of vectors closed under addition and real multiplication.
Every vector space of finite dimension n admits a basis of size n ie. a collection of vectors
v1, ..., vn s.t. every other vector can be written as their linear combination.

The application of a matrix A ∈ Rm×n to a vector in v ∈ Rn is the matrix vector multipli-
cation Av. Two ways to think about this:

1) The ith component of Av is given by the dot product of v with the ith row

2) Av is given by a linear combination of the columns of A

A Note on Type Checking:

What dimension vector does A ∈ Rm×n take in?

v ∈ Rn

How about ABC where A ∈ Rm×n, B ∈ Rn×k, C ∈ Rk×l. What will the output dimension
be?

v ∈ Rl and ABCv ∈ Rm

Simplest and quickest way to think about this(in my opinion) is to keep in mind is the
adjacent dimensions of multiplied object must match:

If A ∈ Rm×n, v ∈ Rn

A× v =⇒ (m× n)× (n× 1) =⇒ m× 1
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1.1 Normed Vector Spaces

Definition 1.3. A norm | · | : V → R on a vector space is defined as any function satisfying

i) |v| ≥ 0 and |v| = 0 ⇐⇒ v = 0 (Positivity)

ii) |av| = |a||v| for a ∈ R (Homogeneity)

iii) |v + w| ≤ |v|+ |w| (triangle inequality)

If we have a norm on V we say we have a normed vector space. These measure the ”size” or
”magnitude” of a vector

Ex: The lp norms

For p > 1 we define the lp norm of v ∈ Rn to be

|v|p = (
∑

i

|vi|p)1/p

1. Convince yourself this is a norm.

Exercise

2. Does 0 < p < 1 define a norm?

Exercise

3. Compute for v = 〈−1, 2〉 the l1, l2, l3, l4 norms. Do you notice anything?

|v|1 = 3

|v|2 =
√

5

|v|3 = 71/3

|v|4 = 171/4

The norms are increasing.

Often we work with the Euclidean norm | · |2 ie. the l2 norm

Definition 1.4. The inner product on a vector space can be thought of as a generalization
of the dot product · between two vectors:

x · y =
∑

i

xiyi

Generally we’ll just be working with the dot product

Fact: Every inner product space admits a norm.

Definition 1.5. We say two vectors v, w ∈ V are orthogonal if v · w = 0

Geometrically this means they are ”skew” or project onto one another as 0.
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1.2 Matrix Operations

Definition 1.6. The transpose of a matrix A, written AT , is defined coordinate wise as
AT

ij = Aji, ie. indices are flipped. So A ∈ Rm×n has AT ∈ Rn×m.

Definition 1.7. The inverse of A ∈ Rm×n satisfies A−1A = I where is the identity matrix.

1.3 Special Types of Matrices

Definition 1.8. Diagonal matrix is such that all the off diagonal entries are zero.

Definition 1.9. Symmetric matrix A is s.t. A = AT

Definition 1.10. Orthogonal matrix A is s.t. A−1 = AT

Equivalently the set of orthogonal matrices are exactly those whose columns are unit norm,
linearly independent, and pairwise orthogonal(orthonormal).

1.4 Good Matrix Vector Identities to Know

We have

(AB)T = BTAT

A = (AT )T

x · y = y · x

x · Ay = xTAy = yTATx = y · ATx

(A−1)−1 = A

(A−1)T = (AT )−1

(A + B)T = AT + BT

2 Vector and Matrix Derivatives

In the following discussion I will differentiate matrix quantities with respect to the elements
of the referenced matrices. Although no new concept is required to carry out such oper-
ations, the element-by-element calculations involve cumbersome manipulations and, thus,
it is useful and often much more efficient to derive these results and have them readily
available(particularly come neural networks).
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Definition 2.1. Vector Derivative Let y = f(x) where f : Rn → Rm. Then define

∂y

∂x
=




∂y1
∂x1

∂y1
∂x2

. . . ∂y1
∂xn

...
... . . .

...
∂ym
∂x1

∂ym
∂x2

. . . ∂ym
∂xn




This is the jacobian.

Note this definition of the jacobian is the transpose of how I defined it in the first recitation.
For a function f : Rn → R this is the same thing as the gradient ∇.

Theorem 1. Let y = Ax where A ∈ Rm×n and x ∈ Rn. Then

∂y

∂x
= A(x) = A

where A does not depend on x.

Proof. 1. Prove this

2.1 More Good Matrix Vector Identities to Know

∂

∂x
wTx = w

∂

∂x
yTAx = yTA

∂

∂x
xTAx = xT (A + AT ) and if A symmetric 2xTA

∂

∂z
yT (z)x(z) = xT ∂y

∂z
+ yT

∂x

∂z

∂

∂z
yT (z)Ax(z) = xTAT ∂y

∂z
+ yTA

∂x

∂z

For proofs/written explanations look up Matrix Calculus and some other stuff by Randal
Barnes or The Matrix Cookbook. Many more good identities(involving more operators like
trace and determinant) can be found there.

A Note on Dimensions of Derivatives:

Given ∂y
∂x

where y : Rn → Rm, we know ∂y
∂x

will have mn components and be m× n
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2.2 Chain Rule: The Reason Neural Networks Are a Thing

In the single variable setting chain rule tells us

(f(g(x)))′ = f ′(g(x))g′(x)

or in leibniz form
∂f

∂x
=

∂f

∂g

∂g

∂x

massively more helpful for taking complex chain rules. Consider:

1. Compute ∂z1
∂x

We can write this as a function z1(y(x)). Then ∂z1
∂x

= ∂z1
∂y

T ∂y
∂x

Alternatively can compute component wise:

∂z1
∂xi

= ∂z1
∂y

T ∂y
∂xi

=
∑

j
∂z1
∂yj

∂yj
∂xi

Moral: Make sure things type check!

3 Discriminant Analysis

Linear discriminant analysis vs. Logistic Regression:
- Statistically similar formulation
- Uses least squares estimation
- Assumes classes are characterized by normal densities (strong assumption)
- More sensitive to outliers
- LDA assumes homoskedasticity (very strong assumption)
When assumptions are met, LDA usually outperforms LR, but assumptions are very strict,
often making it impractical. Most instances of LDA outperforming LR are in asymptotic
cases where improvement is negligible.
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4 Linear Regression (Matrix Form)



2

So far, we have not used any notions, or notation, that goes beyond basic
algebra and calculus (and probability). This has forced us to do a fair amount
of book-keeping, as it were by hand. This is just about tolerable for the simple
linear model, with one predictor variable. It will get intolerable if we have
multiple predictor variables. Fortunately, a little application of linear algebra
will let us abstract away from a lot of the book-keeping details, and make
multiple linear regression hardly more complicated than the simple version1.

These notes will not remind you of how matrix algebra works. However, they
will review some results about calculus with matrices, and about expectations
and variances with vectors and matrices.

Throughout, bold-faced letters will denote matrices, as a as opposed to a
scalar a.

1 Least Squares in Matrix Form

Our data consists of n paired observations of the predictor variable X and the
response variable Y , i.e., (x1, y1), . . . (xn, yn). We wish to fit the model

Y = β0 + β1X + ε (1)

where E [ε|X = x] = 0, Var [ε|X = x] = σ2, and ε is uncorrelated across mea-
surements2.

1.1 The Basic Matrices

Group all of the observations of the response into a single column (n×1) matrix
y,

y =




y1
y2
...
yn


 (2)

Similarly, we group both the coefficients into a single vector (i.e., a 2 × 1
matrix)

β =

[
β0
β1

]
(3)

We’d also like to group the observations of the predictor variable together,
but we need something which looks a little unusual at first:

x =




1 x1
1 x2
...

...
1 xn


 (4)

1Historically, linear models with multiple predictors evolved before the use of matrix alge-
bra for regression. You may imagine the resulting drudgery.

2When I need to also assume that ε is Gaussian, and strengthen “uncorrelated” to “inde-
pendent”, I’ll say so.
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3 1.2 Mean Squared Error

This is an n×2 matrix, where the first column is always 1, and the second column
contains the actual observations of X. We have this apparently redundant first
column because of what it does for us when we multiply x by β:

xβ =




β0 + β1x1
β0 + β1x2

...
β0 + β1xn


 (5)

That is, xβ is the n× 1 matrix which contains the point predictions.
The matrix x is sometimes called the design matrix.

1.2 Mean Squared Error

At each data point, using the coefficients β results in some error of prediction,
so we have n prediction errors. These form a vector:

e(β) = y − xβ (6)

(You can check that this subtracts an n× 1 matrix from an n× 1 matrix.)
When we derived the least squares estimator, we used the mean squared

error,

MSE(β) =
1

n

n∑

i=1

e2i (β) (7)

How might we express this in terms of our matrices? I claim that the correct
form is

MSE(β) =
1

n
eTe (8)

To see this, look at what the matrix multiplication really involves:

[e1e2 . . . en]




e1
e2
...
en


 (9)

This, clearly equals
∑
i e

2
i , so the MSE has the claimed form.

Let us expand this a little for further use.

MSE(β) =
1

n
eTe (10)

=
1

n
(y − xβ)T (y − xβ) (11)

=
1

n
(yT − βTxT )(y − xβ) (12)

=
1

n

(
yTy − yTxβ − βTxTy + βTxTxβ

)
(13)
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4 1.3 Minimizing the MSE

Notice that (yTxβ)T = βTxTy. Further notice that this is a 1 × 1 matrix, so
yTxβ = βTxTy. Thus

MSE(β) =
1

n

(
yTy − 2βTxTy + βTxTxβ

)
(14)

1.3 Minimizing the MSE

First, we find the gradient of the MSE with respect to β:

∇MSE(β =
1

n

(
∇yTy − 2∇βTxTy +∇βTxTxβ

)
(15)

=
1

n

(
0− 2xTy + 2xTxβ

)
(16)

=
2

n

(
xTxβ − xTy

)
(17)

We now set this to zero at the optimum, β̂:

xTxβ̂ − xTy = 0 (18)

This equation, for the two-dimensional vector β̂, corresponds to our pair of nor-
mal or estimating equations for β̂0 and β̂1. Thus, it, too, is called an estimating
equation.

Solving,
β̂ = (xTx)−1xTy (19)

That is, we’ve got one matrix equation which gives us both coefficient estimates.
If this is right, the equation we’ve got above should in fact reproduce the

least-squares estimates we’ve already derived, which are of course

β̂1 =
cXY
s2X

=
xy − x̄ȳ
x2 − x̄2

(20)

and
β̂0 = y − β̂1x (21)

Let’s see if that’s right.
As a first step, let’s introduce normalizing factors of 1/n into both the matrix

products:
β̂ = (n−1xTx)−1(n−1xTy) (22)

Now let’s look at the two factors in parentheses separately, from right to left.

1

n
xTy =

1

n

[
1 1 . . . 1
x1 x2 . . . xn

]



y1
y2
...
yn


 (23)

=
1

n

[ ∑
i yi∑
i xiyi

]
(24)

=

[
y
xy

]
(25)
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