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Sample Space

• The sample space Ω is the set of possible outcomes of an experiment. 
Points ω in Ω are called sample outcomes, realizations, or elements. 
Subsets of Ω are called Events.

• Example. If we toss a coin twice then Ω = {HH,HT, TH, TT}. The event 
that the first toss is heads is A = {HH,HT}

• We say that events A1 and A2 are disjoint (mutually exclusive) if Ai ∩
Aj = {}

• Example: first flip being heads and first flip being tails



Probability

• We will assign a real number P(A) to every event A, called the 

probability of A.

• To qualify as a probability, P must satisfy three axioms:

• Axiom 1: P(A) ≥ 0 for every A 
• Axiom 2: P(Ω) = 1 
• Axiom 3: If A1,A2, . . . are disjoint then



Joint and Conditional Probabilities

• Joint Probability

• P(X,Y)

• Probability of X and Y

• Conditional Probability

• P(X|Y)

• Probability of X given Y



Example of multivariate distribution

joint probability: p( X = minivan, Y = European ) = 0.1481
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Multivariate probability distributions

z Marginal probability
– Probability distribution of a single variable in a– Probability distribution of a single variable in a 

joint distribution
– Example: two random variables X and Y:Example: two random variables X and Y:

p( X = x ) = ∑b=all values of Y p( X = x, Y = b ) 
z Conditional probabilityz Conditional probability

– Probability distribution of one variable given
that another variable takes a certain valuethat another variable takes a certain value

– Example: two random variables X and Y:
p( X = x | Y = y ) = p( X = x Y = y ) / p( Y = y )
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p( X = x | Y = y ) = p( X = x, Y = y ) / p( Y = y ) 



Example of marginal probability

marginal probability: p( X = minivan ) = 0.0741 + 0.1111 + 0.1481 = 0.3333
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Example of conditional probability

conditional probability: p( Y = European | X = minivan ) =
0.1481 / ( 0.0741 + 0.1111 + 0.1481 ) = 0.4433
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Complement rule

Given: event A, which can occur or not

p( not A ) = 1 p( A )p( not A ) = 1 - p( A )

Ω

A not A
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areas represent relative probabilities



Product rule

Given: events A and B, which can co-occur (or not)

p( A B ) = p( A | B ) p( B )p( A, B ) = p( A | B ) ⋅ p( B )
(same expression given previously to define conditional probability)

B( A B )A
(not A, not B)

(A, not B)

B( A, B )

(not A, B)

A

Ω
(A, not B) (not A, B)
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areas represent relative probabilities



Rule of total probability

Given: events A and B, which can co-occur (or not)

p( A ) = p( A B ) + p( A not B )p( A ) = p( A, B ) + p( A, not B )
(same expression given previously to define marginal probability)

B( A B )A
(not A, not B)

(A, not B)

B( A, B )

(not A, B)

A

Ω
(A, not B) (not A, B)
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areas represent relative probabilities



Marginalization and Law of Total Probability

• Marginalization (Sum Rule)

• Law of Total Probability



Indicator Random Variables

Let �  be an event.

Then �  is random variable such that - 

A
1A

�1A

�  if �  is True1 A

�  if �  is False0 A

Example, if �  is the event that tossing biased 
coin (with bias � ) results in heads, then 

Bernoulli � �

A
p

(p) = 1A

Important!

�! [1A] = P(A)

Why?  �! [1A] = 1.P(A) + 0.P(¬A) = P(A)



Independence

Given: events A and B, which can co-occur (or not)

p( A | B ) = p( A ) or p( A B ) = p( A ) p( B )p( A | B ) = p( A )    or    p( A, B ) = p( A ) ⋅ p( B )

Ω

(not A, B)(not A, not B)

Ω

B

(A, not B) ( A, B )A
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areas represent relative probabilities



Independent and Conditional Probabilities

• Assuming that P(B) > 0, the conditional probability of A given B:

• P(A|B)=P(AB)/P(B)

• P(AB) = P(A|B)P(B) = P(B|A)P(A) 
• Product Rule

• Two events A and B are independent if

• P(AB) = P(A)P(B)
• Joint = Product of Marginals

• Two events A and B are conditionally independent given C if they are 
independent after conditioning on C 

• P(AB|C) = P(B|AC)P(A|C) = P(B|C)P(A|C)



Example

• 60% of ML students pass the final and 45% of ML students pass both the 

final and the midterm *

• What percent of students who passed the final also passed the 

midterm?

* These are made up values. 



Example

• 60% of ML students pass the final and 45% of ML students pass both the 

final and the midterm *

• What percent of students who passed the final also passed the 

midterm?

• Reworded: What percent of students passed the midterm given they 

passed the final?

• P(M|F) = P(M,F) / P(F)

• = .45 / .60

• = .75

* These are made up values. 



Bayes’ Rule

P(A|B) = P(AB) /P(B) (Conditional Probability)
P(A|B) = P(B|A)P(A) /P(B)                     (Product Rule)
P(A|B) = P(B|A)P(A) / Σ P(B|A)P(A)                (Law of Total Probability)

Rev. Thomas Bayes



Bayes’ Rule



Image*from*xkcd.com*



Example of Bayes rule

z Marie is getting married tomorrow at an outdoor ceremony in the 
desert.  In recent years, it has rained only 5 days each year. 
Unfortunately the weatherman is forecasting rain for tomorrow WhenUnfortunately, the weatherman is forecasting rain for tomorrow. When 
it actually rains, the weatherman has forecast rain 90% of the time. 
When it doesn't rain, he has forecast rain 10% of the time. What is the 
probability it will rain on the day of Marie's wedding?probability it will rain on the day of Marie s wedding? 

z Event A: The weatherman has forecast rain. 
z Event B: It rains. 
z We know:

– p( B ) = 5 / 365 = 0.0137   [ It rains 5 days out of the year. ]
– p( not B ) = 360 / 365 = 0.9863p( )
– p( A | B ) = 0.9   [ When it rains, the weatherman has forecast 

rain 90% of the time. ]
p( A | not B ) = 0 1 [When it does not rain the weatherman has
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– p( A | not B ) = 0.1   [When it does not rain, the weatherman has 
forecast rain 10% of the time.]



Example of Bayes rule, cont’d.

z We want to know p( B | A ), the probability it will rain on 
the day of Marie's wedding, given a forecast for rain by 
th th Th b d t i d fthe weatherman. The answer can be determined from 
Bayes rule:

1. p( B | A ) = p( A | B ) ⋅ p( B ) / p( A )1. p( B | A ) p( A | B ) p( B ) / p( A )
2. p( A ) = p( A | B ) ⋅ p( B ) + p( A | not B ) ⋅ p( not B ) = 

(0.9)(0.014) + (0.1)(0.986) = 0.111
3. p( B | A ) = (0.9)(0.0137) / 0.111 = 0.111 

z The result seems unintuitive but is correct. Even when the 
weatherman predicts rain, it only rains only about 11% of 
the time. Despite the weatherman's gloomy prediction, it 
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p g y p ,
is unlikely Marie will get rained on at her wedding. 



Discrete vs Continuous Random Variables

• Discrete: can only take a countable number of values

• Example: number of heads 

• Distribution defined by probability mass function (pmf)

• Marginalization: 

• Continuous: can take infinitely many values (real numbers)

• Example: time taken to accomplish task

• Distribution defined by probability density function (pdf)

• Marginalization: 



Probability Distribution Statistics

• Mean: E[x] = μ = first moment  =

• Variance: Var(X) = 

• Nth moment =

Univariate continuous random variable

Univariate discrete random variable=



Bernoulli Distribution

• Input: x ∈ {0, 1}

• Parameter: μ

• Example: Probability of flipping heads (x=1)

• Mean = E[x] = μ
• Variance = μ(1 − μ)

Discrete Distribution



Binomial Distribution

• Input: m = number of successes

• Parameters: N = number of trials

μ = probability of success

• Example: Probability of flipping heads m times out of N independent 

flips with success probability μ

• Mean = E[x] = Nμ
• Variance = Nμ(1 − μ)

Discrete Distribution



Multinomial Distribution

• The multinomial distribution is a generalization of the binomial 

distribution to k categories instead of just binary (success/fail)

• For n independent trials each of which leads to a success for exactly 

one of k categories, the multinomial distribution gives the probability 

of any particular combination of numbers of successes for the various 

categories

• Example: Rolling a die N times

Discrete Distribution



Multinomial Distribution

• Input: m1 … mK (counts)

• Parameters: N = number of trials

μ = μ1 … μK probability of success for each category, Σμ=1

• Mean of mk: Nµk

• Variance of mk: Nµk(1-µk)

Discrete Distribution



1"dim&Gaussian&distribution
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µ=0 µ=0

!2
!2

X$is$Gaussian$N(μ,σ2)

P (X = x|µ,�) = 1p
2⇡�2



Gaussian Distribution

• Gaussians with different means and variances



d"dim%Gaussian%distribution
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X$is$Gaussian$N(μ,$Σ) μ$is$d2dim$vector,$Σ is$dxd dim$matrix

μ

Σ

μ

Σ =$σ2I

P (X = x|µ,⌃) = 1p
(2⇡)d|⌃|

d=2
X$=$[X1;$X2]

X1

X2

X1

X2



Questions?


