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Aarti Singh'’s slides
https://www.cs.cmu.edu/~aarti/Class/10315 Fall19/lecs/Lecture2.pdf
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Sample Space

* The sample space Q is the set of possible outcomes of an experiment.
Points w in Q are called sample outcomes, realizations, or elements.
Subsets of Q are called Events.

* Example. If we toss a coin twice then Q = {HH,HT, TH, TT}. The event
that the first toss is heads is A = {HH,HT}

* We say that events Al and A2 are disjoint (mutually exclusive) if Ai N
Aj =1}
* Example: first flip being heads and first flip being tails



Probability

* We will assign a real number P(A) to every event A, called the
probability of A.

* To qualify as a probability, P must satisfy three axioms:
e Axiom 1: P(A) > 0 for every A
e Axiom2:P(Q)=1
 Axiom 3:If A1,A2, ... are disjoint then

=1 , '

=1



Joint and Conditional Probabilities

* Joint Probability
* P(X)Y)
* Probability of Xand Y

e Conditional Probability
* P(X]Y)
* Probability of X given Y



Example of multivariate distribution

joint probability: p( X = minivan, Y = European ) = 0.1481
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Multivariate probability distributions

e Marginal probability

— Probability distribution of a single variable in a
joint distribution

— Example: two random variables X and Y-
P(X=X)=2p-aivawesory PCX =X, Y=D)
e Conditional probability

— Probability distribution of one variable given
that another variable takes a certain value

— Example: two random variables X and Y-
p(X=x|Y=y)=p(X=x,Y=y)Ip(Y=y)
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Example of marginal probability
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Example of conditional probability

conditional probability: p( Y = European | X = minivan ) =
0.1481/(0.0741 + 0.1111 + 0.1481 ) = 0.4433
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Complement rule

Given: event A, which can occur or not
p(notA)=1-p(A)
0
not A
areas represent relative probabilities
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Product rule

Given: events A and B, which can co-occur (or not)

p(A, B)=p(A|B)-p(B)

(same expression given previously to define conditional probability)
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Rule of total probability

Given: events A and B, which can co-occur (or not)

p(A)=p(A B)+p(A notB)

(same expression given previously to define marginal probability)
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Marginalization and Law of Total Probability

* Marginalization (Sum Rule)

plx)

> plx.y)

e Law of Total Probability

p(x)

ZP - ply)



Indicator Random Variables

Let A be an event.
Then 1, is random variable such that -

1if Ais True Example, if A is the event that tossing biased
1 coin (with bias p) results in heads, then
A
0 if A is False Bernoulli (p) =1,
Important!
E [14] = P(A)

Why? E [1,] = 1.P(A) + 0.P(~A) = P(A)



Independence

Given: events A and B, which can co-occur (or not)

p(A[B)=p(A) or p(A B)=p(A)-p(B)
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Independent and Conditional Probabilities

* Assuming that P(B) > 0, the conditional probability of A given B:
* P(A|B)=P(AB)/P(B)
 P(AB) = P(A|B)P(B) = P(B|A)P(A)

* Product Rule

* Two events A and B are independent if
* P(AB) = P(A)P(B)

* Joint = Product of Marginals

* Two events A and B are conditionally independent given C if they are
independent after conditioning on C

* P(AB|C) =P(B|AC)P(A|C) =P(B|C)P(A]|C)



Example

* 60% of ML students pass the final and 45% of ML students pass both the
final and the midterm *

* What percent of students who passed the final also passed the
midterm?

* These are made up values.



Example

* 60% of ML students pass the final and 45% of ML students pass both the
final and the midterm *

* What percent of students who passed the final also passed the
midterm?

 Reworded: What percent of students passed the midterm given they
passed the final?

* P(MF) =P(M,F) / P(F)
* = .45/ .60
¢ =.75

* These are made up values.



Bayes’ Rule

P(A|B) = P(AB) /P(B) (Conditional Probability)
P(A|B) = P(B|A)P(A) /P(B) (Product Rule)
P(A|B) =P(B|A)P(A) / Z P(B|A)P(A) (Law of Total Probability)

P(A)P(B
P(B)

P(B) =) P(B|4;)P(4;)

]

A)

P(A

B) =

Rev. Thomas Bayes



Bayes’ Rule

P(A) P(B|A)

P(A|B) = =5
_ plx|0)p(0)
p(flz) = o(z)

Posterior = Likelihood * Prior

Evidence

Posterior probability oc Likelihood x Prior probability



DID THE SUN JUST EXPLODE?

(ITS NIGHT; 50 WERE NOT SURE.)

THIS NEUTRINO DETECTOR MERSURES
WHETHER THE SUN HAS GONE NOVA.

( THEN, TROWS TWO DICE. |F THEY

BOTH COME UP SIX, ITUES TO US.
OTHERWISE,, IT TELLS THE TRUIH.
LET TRY.
JETECTOR! HAS THE
SN GONE NB?

) )
0

FREQUENTIST STRTISTICIAN: BAYESIAN STATISTIOAN:

THE PROBABILTY OF THIS RESULT

HAPPENING BY CHANCE 15 30027, BET YOU $50
GNCE p<0.05, T CONCLUDE T HASNT.
THAT THE SUN HAS EXPLODED. )

Ta

Image from xkcd.com



Example of Bayes rule

e Marie is getting married tomorrow at an outdoor ceremony in the
desert. In recent years, it has rained only 5 days each year.
Unfortunately, the weatherman is forecasting rain for tomorrow. When
it actually rains, the weatherman has forecast rain 90% of the time.
When it doesn't rain, he has forecast rain 10% of the time. What is the
probability it will rain on the day of Marie's wedding?

e Event A: The weatherman has forecast rain.

e Event B: It rains.

e We know:
— p(B)=5/365=0.0137 [Itrains 5 days out of the year. ]
— p(not B)=360/365=0.9863

— p(A|B)=0.9 [When it rains, the weatherman has forecast
rain 90% of the time. ]

— p(A|notB)=0.1 [When it does not rain, the weatherman has
forecast rain 10% of the time.]
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Example of Bayes rule, cont’'d.

e We want to know p( B | A ), the probability it will rain on
the day of Marie's wedding, given a forecast for rain by
the weatherman. The answer can be determined from
Bayes rule:

. p(B[A)=p(A|B)-p(B)/p(A)

2. p(A)=p(A|B)-p(B)+p(A[notB)-p(notB)=
(0.9)(0.014) + (0.1)(0.986) = 0.111

3. p(B|A)=(0.9)0.0137)/0.111 = 0.111

e The result seems unintuitive but is correct. Even when the
weatherman predicts rain, it only rains only about 11% of
the time. Despite the weatherman's gloomy prediction, it
IS unlikely Marie will get rained on at her wedding.
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Discrete vs Continuous Random Variables

 Discrete: can only take a countable number of values
* Example: number of heads
* Distribution defined by probability mass function (pmf)

* Marginalization: p(z) = Z/)(J'-y)
Y

e Continuous: can take infinitely many values (real numbers)
* Example: time taken to accomplish task

* Distribution defined by probability density function (pdf)

* Marginalization:

plx) = / plz,y)dy
vy



Probability Distribution Statistics

o0
* Mean: E[X] == first moment =/ xf(x)dx Univariate continuous random variable

= Z ;i Pi Univariate discrete random variable
1=1
* Variance: Var(X) = E [(X — u)?]
= E [(X - E[X])*]
=E :Xz — 2X E[X] + (E[X])Q]
=E :XQ] — 2E[X|E[X] + (E[X])2
= E[X?] - (B[X])’

* Nth moment = / | (z — )" f(z) dx



Discrete Distribution

Bernoulli Distribution

* Input: x € {0, 1}
* Parameter: u

e Example: Probability of flipping heads (x=1)

P(n) for p=0.6

0.6
Bern(z|p) = p™(1 — p)' = 0.5
0.4
0.3
* Mean = E[x] = u ) s
* Variance = u(1 - ) 0.1

n



. T Binomial distnbution withn=15andp=0.2
Discrete Distribution

025 -
Binomial Distribution wd [IL
g‘ 015 —
5
£ om0
* Input: m = number of successes &
005 —
[ ] . = I
Parameters: N = number of trials . e
| L L . . G G [ L [ L L L
0 1 23 4 68 67 8 0 1011 12131415

1L = probability of success e

* Example: Probability of flipping heads m times out of N independent
flips with success probability u

. ¢ - \ .'\" 1 \ \ - T
Bin(m|N.pu) = (1 — p)
m

* Mean = E[x] = Nu
* Variance = Nu(1 - u)



Discrete Distribution

Multinomial Distribution

* The multinomial distribution is a generalization of the binomial
distribution to k categories instead of just binary (success/fail)

* For n independent trials each of which leads to a success for exactly
one of k categories, the multinomial distribution gives the probability
of any particular combination of numbers of successes for the various
categories

* Example: Rolling a die N times



Discrete Distribution

Multinomial Distribution

* Input: m, ... m (counts)
* Parameters: N = number of trials
K=, ... L probability of success for each category, 2p=1

, .- K
. ATY ‘I\ g
Mult(m,, mo, ... . my |, N) = I | T
MMy ... TN ‘
- =1
* Mean of m: N,
* Variance of m: N, (1-p,)



1-dim Gaussian distribution

X is Gaussian N(u,0?)

L —(e=p?
P(X =z|u,0) =
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Gaussian Distribution

e Gaussians with different means and variances
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d-dim Gaussian distribution

X is Gaussian N(, 2) W is d-dim vector, % is dxd dim matrix
P(X =z|p, %) = 1 exp (—l(x —p) 2 (x— n))
| Vv (2m)4[x] 2 |
X, X
3 =0 2_
=2 |
X = [Xy; X5




Questions?



