Commonly Wrong Problems

[Note: We talk through each option and why they're correct/wrong, so watch the recording if you're confused about a specific option not explained (in detail) on the doc]

• **QnA #3 Q1.1**

Q1.1

1 Point

A deep (multi-layer) neural network with a linear activation function for its hidden units and sigmoid activation for its last layer, and a multi-class logistic regression classifier, are both capable of approximating the same set of functions.

- Nested linear combinations can always be re-expressed as a single linear combination -> multi-layer = single layer

Point 2: Multi-class

- Each output label probability in the neural network is independent of the other outputs -> equivalent to applying logistic regression for each class

QnA #3 2.3 + 2.4

$Q2.3$

1 Point

Let m be an integer which divides the 1-dimensional range of $\{x_i\}$ into m equal width bins, $\{B_j\}_{j=1}^m$ and let $h=\frac{R}{m}$ be the binwidth where R is the length of the range. Let n_j denote the number of observations in B_j and consider also $\hat{p}_j = \frac{n_j}{n}, p_j = \int_{B_j} f(u) du$ where f is the density and $\hat{f}(x) = \frac{\hat{p}_j}{h}$ for all $x \in B_j.$ The expectation and variance of this estimator are given by $\mathbb{E}[\hat{f}(x)]=\frac{p_j}{h}$ and $\mathbb{V}[\hat{f}(x)]=\frac{p_j(1-p_j)}{nh^2}.$

Look at the variance and select all that apply:

If we make the binwidth twice as small, we quadruple the variance

Increasing the binwidth decreases the bias

If we try to reduce bias, we increase variance and vice versa

Q 2.4

1 Point

Referring to the above setup, look at the bias:

Is this an unbiased estimator of the density over B_j ?

O True

O False

Bias: Difference between expected value and true value \overline{a}

QnA #4 Q2.2 + Q2.3

$Q2.2$

2 Points

ID3 and C4.5 Decision Trees (DTs) perform univariate splitting (one attribute at-a-time). Effects of this way of proceeding include that:

No limit: Can express any function of the input features (worst-case: one path for each training point)

$Q2.3$

1 Point

DTs show good and bad properties. Select which of the following are correctly characterized as good/bad properties:

(bad) DTs can't learn all possible hypothesis functions when labels are noisy (i.e. two data points with same feature values can have different labels).

◘ (good) DTs provide interpretable rules for prediction.

 \blacktriangleright (bad) ID3 / C4.5 aren't suitable for incremental learning (i.e., adapting the learned tree after the presentation of a new training data point)

DT doesn't need perfect classification (it just needs to pick the best decision with $\qquad \qquad$ noisy labels)

QnA #4 Q2.2 + Q2.3

Q5.3

1 Point

Select all that apply.

 \blacktriangleright In AdaBoost weights of the misclassified examples at each iteration go up by the same multiplicative factor.

AdaBoost minimizes the exp loss, which is another convex upper bound on the 0-1 loss function.

If each weak learner ht is slightly better than random guessing (st < 0.5), then test error of AdaBoost decays exponentially fast in number of rounds T.

Both kernelized logistic regression and Adaboost can be interpreted as learning data-adaptive features, i.e. features are not pre-specified but learnt using data.

AdaBoost [Freund & Schapire'95]

Given: $(x_1, y_1), \ldots, (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$ Initialize $D_1(i) = 1/m$. Initially equal weights For $t = 1, \ldots, T$:

- Train weak learner using distribution D_t . Naïve bayes, decision stump
- Get weak classifier $h_t: X \to \mathbb{R}$.
- Choose $\alpha_t \in \mathbb{R}$. Magic (+ve)

Update:
\n
$$
D_{t+1}(i) = \frac{D_t(i)}{Z_t} \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}
$$
\n
$$
= \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t} \begin{matrix} \text{increase weight} \\ \text{if wrong opt i} \\ \text{y_i h} \\ \text{y_i h} \\ \text{y_i h} \end{matrix} = -1 < 0
$$

where Z_t is a normalization factor

Boosting and Logistic Regression

Logistic regression: Boosting: Minimize exp loss • Minimize log loss $\sum_{i=1}^{m} \exp(-y_i f(x_i))$ $\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i)))$ • Define • Define $f(x) = \sum \alpha_t h_t(x)$ $f(x) = \sum w_j x_j$ where x_i predefined where $h_t(x)$ defined dynamically features to fit data (linear classifier) (not a linear classifier) Jointly optimize over all • Weights α_t learned per iteration

weights wo, w1, w2... t incrementally

train, not test error

 19

Expectation Maximization (EM) with Gaussian Mixture Models (GMM)

Let z be a multinomial random latent variable with components $z_1, z_2, ..., z_k$, where each component takes on 0 or 1 *i.e.* $P(z_j = 1)$ is the probability that a point comes from gaussian distribution j.

Let
$$
\lambda = \mu_1, \mu_2, ..., \mu_k, \Sigma_1, ..., \Sigma_k, \pi_1, ..., \pi_k
$$
 where $\pi_j = P(z_j=1)$.

The log likelihood $\ell(\lambda | x_1, x_2, ..., x_m) = \sum_{i=1}^m log P(x_i | \lambda) = \sum_{i=1}^m log \sum_{j=1}^k \pi_j \mathcal{N}(x_i | \mu_j, \Sigma_j)$.

(Note: These are the more standard notations used for EM. It differs slightly from class notation, with the correspondence as: $z = y, \mu = p$

(a) E-step: Calculate the posterior probability $P(z_j = 1 | x_i, \lambda) \ \forall i, j$.

$$
P(z_j = 1 | x_i, \lambda)
$$

=
$$
\frac{p(z_j = 1 | \pi_j) p(x_i | z_j = 1, \mu_j, \Sigma_j)}{p(x_i | \lambda)}
$$
 [Bayes Rule]
=
$$
\frac{\pi_j \mathcal{N}(x_i | \mu_j, \Sigma_j)}{\sum_{l=1}^k \pi_l \mathcal{N}(x_i | \mu_l, \Sigma_l)}
$$
 [Marginalization for denominator]

(Note: In lecture, Aarti removed the denominator and represented the proportional probability with the numerator)

(b) M-step: Apply MLE and update the parameters π_j , μ_j , Σ_j $\forall j$.

For example, we solve for μ_j by taking the derivative of log likelihood w.r.t μ_j and setting it to 0.

$$
\frac{\partial \ell}{\partial \mu_j} = \frac{\partial \ell}{\partial \mu_j} \sum_{i=1}^m \log \sum_{l=1}^k \pi_l \mathcal{N}(x_i | \mu_l, \Sigma_l)
$$
\n[Log likelihood function]\n
$$
= \sum_{i=1}^m \frac{1}{\sum_{l=1}^k \pi_l \mathcal{N}(x_i | \mu_l, \Sigma_l)} \frac{\partial \ell}{\partial \mu_j} \sum_{l=1}^k \pi_l \mathcal{N}(x_i | \mu_l, \Sigma_l)
$$
\n[Differentiation rule: $\frac{\partial}{\partial x} \ln(u(x)) = \frac{1}{u(x)} * u'(x)$]\n
$$
= \sum_{i=1}^m \frac{1}{\sum_{l=1}^k \pi_l \mathcal{N}(x_i | \mu_l, \Sigma_l)} \frac{\partial \ell}{\partial \mu_j} \pi_j \mathcal{N}(x_i | \mu_j, \Sigma_j)
$$
\n[Eliminating terms with no u_j]\n
$$
= \sum_{i=1}^m \frac{\mathcal{N}(x_i | \mu_j, \Sigma_j) \pi_j}{\sum_{l=1}^k \pi_l \mathcal{N}(x_i | \mu_l, \Sigma_l)} \frac{\partial \ell}{\partial \mu_j} \frac{(x_i - \mu_j)^2}{2\Sigma_j}
$$
\n[Exponential rule: $\frac{\partial}{\partial x} e^{u(x)} = e^{u(x)} * u'(x)$]\n
$$
= \sum_{i=1}^m P(z_j = 1 | x_i, \lambda) \frac{\partial \ell}{\partial \mu_j} \frac{(x_i - \mu_j)^2}{2\Sigma_j}
$$
\n[Substitute from E-step]\n
$$
= \sum_{i=1}^m P(z_j = 1 | x_i, \lambda) \sum_j^{-1} (x_i - \mu_j)
$$
\n[Derivative of log gaussian density function]

Setting this to 0, you get: $\mu_j = \frac{\sum_{i=1}^m P(z_j=1|x_i,\lambda)x_i}{\sum_{i=1}^m P(z_j=1|x_i,\lambda)}$

Similar calculation produces Σ_j and π_j .