Commonly Wrong Problems

[Note: We talk through each option and why they’re correct/wrong, so watch the recording if you’re confused about a
specific option not explained (in detail) on the doc]

e QnA#3AQl.1

Q14
1 Point

A deep (multi-layer) neural network with a linear activation function for its
hidden units and sigmoid activation for its last layer, and a multi-class logistic
regression classifier, are both capable of approximating the same set of

functions.
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Point 1: Multi-layer

- Nested linear combinations can always be re-expressed as a single linear combination
-> multi-layer = single layer

Point 2: Multi-class

- Each output label probability in the neural network is independent of the other
outputs -> equivalent to applying logistic regression for each class



e QnA#323+2.4

Q2.3
1 Point

Let m be an integer which divides the 1-dimensional range of {:1:1} into m
equal width bins, { B; }" | and let h = % be the binwidth where R is the
length of the range. Let 12; denote the number of observations in Bj and

consider also p; = %,pj = fB- f (u)du where f is the density and
7

f(a:) = % forall z € Bj. The expectation and variance of this estimator

~ ~

are given by B[ f(z)] = ‘% and V[f(z)] = %.

Look at the variance and select all that apply:

If we try to reduce bias, we increase variance and vice versa

Q2.4 o N '
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Referring to the above setup, look at the bias: 50 0.5 1
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- Bias: Difference between expected value and true value



e QnA#4Q2.2+Q2.3

Q2.2
2 Points

ID3 and C4.5 Decision Trees (DTs) perform univariate splitting {one attribute
at-a-time). Effects of this way of proceeding include that:

Decision boundaries are axis-aligned

Even a relatively simple boolean function might require a complex
DT to be described

- No limit: Can express any function of the input features (worst-case: one path for
each training point)

Q2.3
1 Point

DTs show good and bad properties. Select which of the following are
correctly characterized as good/bad properties:

(good) DTs provide interpretable rules for prediction.

(bad) ID3/ C4.5 aren’t suitable for incremental learning (i.e., adapting

the learned tree after the presentation of a new training data point)

- DT doesn’t need perfect classification (it just needs to pick the best decision with
noisy labels)



e QnA#4Q2.2+Q2.3

Q5.3
1 Point

Select all that apply.

In AdaBoost weights of the misclassified examples at each iteration

go up by the same multiplicative factor.

AdaBoost minimizes the exp loss, which is another convex upper

bound on the 0-1loss function.

AdaBoost [Freund & Schapire’95]

Given: (21,41)s-- - (Zm, Ym) Where z; € X, y; €Y = {—1,+1}

Initialize D\ (1) = 1/m. Initially equal weights

Fort=1,....T:

Train weak learner using distribution ;. Naive bayes, decision stump
Get weak classifier oy : X — R.

Choose a; € R. agic (+ve)

Update:
L D) { e” % if y; = hy(xy

D) =77, e iy # hyla)

_ Dt('L) exp(_atyiht ($1)) Increase Weig

= 7

where Z; is a normalization factor

train, not test error

Boosting and Logistic Regression

Logistic regression: Boosting:
* Minimize log loss * Minimize exp loss

S In(1 + exp(—yi/ (2))) S exp(—yif (1)
=1 =1

k3

* | Define .
flx) = ija:j
i

where x; predefined
features

Define
f@) =3 ah(x)
1

where h,(x) defined dynamically

to fit data
(not a linear classifier)

(linear classifier)

* Jointly optimize over all
weights wo, w1, wa...

* Weights a, learned per iteration
tincrementally
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Expectation Maximization (EM) with Gaussian Mixture Models
(GMM)

Let z be a multinomial random latent variable with components 21, 23, ..., 25, where each component takes
on 0 or 1 i.e. P(z; =1) is the probability that a point comes from gaussian distribution j.

Let A = p1, po, oy iy 21, o, Dk, T, -, T, Where m; = P(z;=1).
The log likelihood £(A|@1, T2, ..., Tm) = D vy logP(z;|N) = Y1t log 25:1 TN (x|, Ij).

(Note: These are the more standard notations used for EM. It differs slightly from class notation, with
the correspondence as: z = y, u = p)

(a) E-step: Calculate the posterior probability P(z; = 1|x;, A) Vi, j.

P(Zj = 1|.’EZ, )\)
_ plzi=lmy f&i‘lj)a:laﬂwzj) [Bayes Rule]

N (i |pg,B5)

= S N (el S [Marginalization for denominator]
=1 T ’

(Note: In lecture, Aarti removed the denominator and represented the proportional probability with
the numerator)

(b) M-step: Apply MLE and update the parameters m;, u;, £; Vj.
For example, we solve for p1; by taking the derivative of log likelihood w.r.t p1; and setting it to 0.

2 = PL S log Yoy mN (i, ) [Log likelihood function]
m k . ..

=>" m‘%ﬁ oy MmN (2, 20) [Differentiation rule: %ln(u(m)) = ﬁ xu'(2)]

=2 éﬂﬂj/\/(%m]’, %5) [Eliminating terms with no ;]

=138 mN (@il Ong

_ Zm N(@ilps,2)m5 o (wi—py)*
=158 mN (|, X)) Ok 2%

[Exponential rule: %e“(z) = e"(®) x o/ ()]

= >ty Pz = 1, A)%% [Substitute from E-step]
=3 Pz = Uz, NE; (2 — py) [Derivative of log gaussian density function]

Setting this to 0, you get: u; = zz‘?nl P;Zi”ﬁ;)\;g)cl
=1 J— )

Similar calculation produces »; and ;.



