
Commonly Wrong Problems 

[Note: We talk through each option and why they’re correct/wrong, so watch the recording if you’re confused about a 

specific option not explained (in detail) on the doc] 

 

• QnA #3 Q1.1 

 

Neural Network                        vs                        Logistic Regression  

Point 1: Multi-layer 

- Nested linear combinations can always be re-expressed as a single linear combination 

-> multi-layer = single layer 

Point 2: Multi-class 

- Each output label probability in the neural network is independent of the other 

outputs -> equivalent to applying logistic regression for each class  



• QnA #3 2.3 + 2.4 

 

 

 

- Bias: Difference between expected value and true value 

  



• QnA #4 Q2.2 + Q2.3 

 

- No limit: Can express any function of the input features (worst-case: one path for 

each training point) 

 

 

- DT doesn’t need perfect classification (it just needs to pick the best decision with 

noisy labels) 

  



• QnA #4 Q2.2 + Q2.3 

 

  

train, not test error 
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Expectation Maximization (EM) with Gaussian Mixture Models
(GMM)

Let z be a multinomial random latent variable with components z1, z2, ..., zk, where each component takes
on 0 or 1 i.e. P(zj = 1) is the probability that a point comes from gaussian distribution j.

Let λ = µ1, µ2, ..., µk,Σ1, ...,Σk, π1, ..., πk where πj = P(zj=1).

The log likelihood `(λ|x1, x2, ..., xm) =
∑m
i=1 logP (xi|λ) =

∑m
i=1 log

∑k
j=1 πjN (xi|µj ,Σj).

(Note: These are the more standard notations used for EM. It differs slightly from class notation, with
the correspondence as: z = y, µ = p)

(a) E-step: Calculate the posterior probability P (zj = 1|xi, λ) ∀i, j.

P (zj = 1|xi, λ)

=
p(zj=1|πj)p(xi|zj=1,µj ,Σj)

p(xi|λ) [Bayes Rule]

=
πjN (xi|µj ,Σj)∑k
l=1 πlN (xi|µl,Σl)

[Marginalization for denominator]

(Note: In lecture, Aarti removed the denominator and represented the proportional probability with
the numerator)

(b) M-step: Apply MLE and update the parameters πj , µj , Σj ∀j.
For example, we solve for µj by taking the derivative of log likelihood w.r.t µj and setting it to 0.

∂`
∂µj

= ∂`
∂µj

∑m
i=1 log

∑k
l=1 πlN (xi|µl,Σl) [Log likelihood function]

=
∑m
i=1

1∑k
l=1 πlN (xi|µl,Σl)

∂`
∂µj

∑k
l=1 πlN (xi|µl,Σl) [Differentiation rule: ∂

∂x ln(u(x)) = 1
u(x) ∗ u

′(x)]

=
∑m
i=1

1∑k
l=1 πlN (xi|µl,Σl)

∂`
∂µj

πjN (xi|µj ,Σj) [Eliminating terms with no uj ]

=
∑m
i=1

N (xi|µj ,Σj)πj∑k
l=1 πlN (xi|µl,Σl)

∂`
∂µj

(xi−µj)2

2Σj
[Exponential rule: ∂

∂xe
u(x) = eu(x) ∗ u′(x)]

=
∑m
i=1 P (zj = 1|xi, λ) ∂`

∂µj

(xi−µj)2

2Σj
[Substitute from E-step]

=
∑m
i=1 P (zj = 1|xi, λ)Σ−1

j (xi − µj) [Derivative of log gaussian density function]

Setting this to 0, you get: µj =
∑m

i=1 P (zj=1|xi,λ)xi∑m
i=1 P (zj=1|xi,λ)

Similar calculation produces Σj and πj .
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