Probability Review · I'm assuming you know all of these words: - Probability
- Random Variable, Indicator RV
- Joint Probability > [tency way of saying P(XNY)]
- Conditional Probability - Complementary events - Intersection of events
- Law of total probability > (partitions!) $P(x) = \sum_{y} P(y) P(x|y)$ - Independence of events GP(XNY) = P(X)P(4) P(X|Y) = P(X)

X Correlated / Uncorrelated events
X and Y are uncorrelated iff Covariance
$$(X,Y) = D$$

 $(x,y) = E[XY] - E[X]E[Y]$

Correlated Example: For an example, suppose X and Y can take on the joint values (expressed as ordered pairs (0,0), (1,0), and (1,1) with equal probability. Then for any of the three possible points (x,y), P((X,Y)=(x,y))=1/3. We will find the covariance between these two random variables.

The first step is to calculate the mean of each individual random variable. X only takes on two values, 0 and 1, with probability 1/3 and 2/3 respectively. (Remember that two of the points have X=1, with each of those probabilities as 1/3.) Then

$$E[X] = 0 \cdot 1/3 + 1 \cdot 2/3 = 2/3$$

 $E[X] = 0 \cdot 1/3 + 1 \cdot 2/3 = 2/3$ Similarly, $E[Y] = 0 \cdot 2/3 + 1 \cdot 1/3 = 1/3$. Now, we must calculate the expected value of the product of X and Y. That product can take on values 0 or 1 (multiply the elements of each ordered pair together) with respective probabilities 2/3 and 1/3. These probabilities are obtained the same way as for the individual

 $E[XY] = 0 \cdot 2/3 + 1 \cdot 1/3 = 1/3$

 $Cov(X,Y) = E[XY] - E[X]E[Y] = \frac{1}{2} - \frac{2}{3} \cdot \frac{1}{2} = \frac{1}{2} - \frac{2}{6} = \frac{1}{6}$

Let's take X and Y to exist as an ordered pair at the points (-1,1), (0,0), and (1,1) with probabilities 1/4, 1/2, and 1/4. Then $E[X] = -1 \cdot 1/4 + 0 \cdot 1/2 + 1 \cdot 1/2$ 1/4 = 0 = E[Y] and

 $E[XY] = -1 \cdot 1/4 + 0 \cdot 1/2 + 1 \cdot 1/4 = 0 = E[X]E[Y]$ and thus X and Y are uncorrelated.

Uncorrelated Example

- Bayes Rule - Important in this class [and life?]
$$P(A|B) = \underbrace{P(A_i) \cdot P(B|A_i)}_{P(B)}$$

and if we have
$$A_{i,A_{i}}$$
. An form a partitioning then $P(B) = \sum_{i} P(A_{i}) P(B|A_{i})$
Bayes Example:

In a public university, 51% of the students are females. One adult is randomly selected for a survey. It turned out later that the selected survey subject was studying sciences. Also, 10% of female students study sciences while 5% of males study sciences. What is the probability that the selected subject is a female? Let's

F' = maleS = study sciences S' = study other fields P(F)=

P(F')=

P(S|F)=0.1 because 10% of the female students study sciences P(S|F')=0.05 because 5% of the male students study sciences We want P(F|S)

P(F)= 0.51 because 51% of students are females

P(F')= 0.49 because 49% of students are males

P(S|F)=P(S|F')=

$$P(S|F) = P(S|F') =$$
We want ???

SOL:

3 Gaussian Distribution

Review: 1-D Gaussian Distribution

The probability density function of $\mathcal{N}(\mu, \sigma^2)$ is given by:

$$p(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(x-\mu)^2\right]$$

Multivariate Gaussian Distribution

The multivariate Gaussian distribution in M dimensions is parameterized by a **mean vector** $\mu \in \mathbb{R}^M$ and a **covariance matrix** $\Sigma \in \mathbb{R}^{M \times M}$, where Σ is a symmetric and positive-definite. This distribution is denoted by $\mathcal{N}(\mu, \Sigma)$, and its probability density function is given by:

$$p(x; oldsymbol{\mu}, oldsymbol{\Sigma}) = rac{1}{\sqrt{(2\pi)^M |oldsymbol{\Sigma}|}} \exp \left[-rac{1}{2} (x - oldsymbol{\mu})^T oldsymbol{\Sigma}^{-1} (x - oldsymbol{\mu})
ight]$$

where $|\Sigma|$ denotes the determinant of Σ .

Let $X = [X_1, X_2, ..., X_m]^T$ be a vector-valued random variable where $X = [X_1, X_2, ..., X_m]^T \sim \mathcal{N}(\mu, \Sigma)$. Then, we have:

$$\boldsymbol{\Sigma} = Cov[\boldsymbol{X}] = \begin{bmatrix} Cov[X_1, X_1] = Var[X_1] & Cov[X_1, X_2] & \dots & Cov[X_1, X_M] \\ Cov[X_2, X_1] & Cov[X_2, X_2] = Var[X_2] & \dots & Cov[X_2, X_M] \\ \vdots & \vdots & \ddots & \vdots \\ Cov[X_M, X_1] & Cov[X_M, X_2] & \dots & Cov[X_M, X_M] = Var[X_M] \end{bmatrix}$$

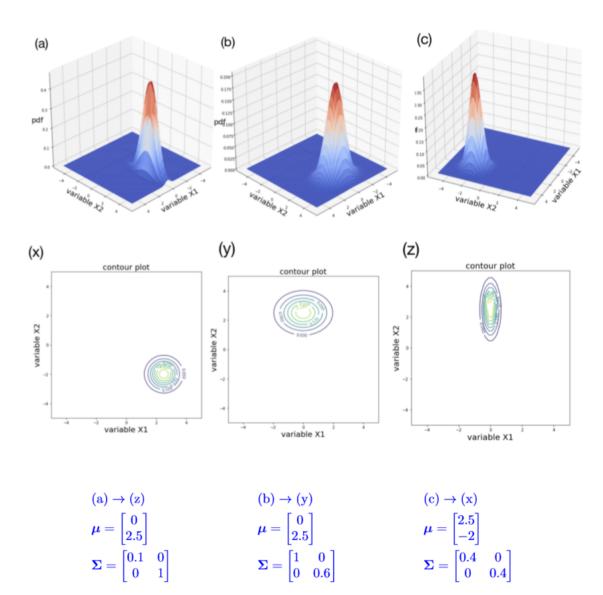
Note: Any arbitrary covariance matrix is positive semi-definite. However, since the pdf of a multivariate Gaussian requires Σ to have a strictly positive determinant, Σ has to be positive definite.

In order to get get an intuition for what a multivariate Gaussian is, consider the simple case where M=2. Then, we have:

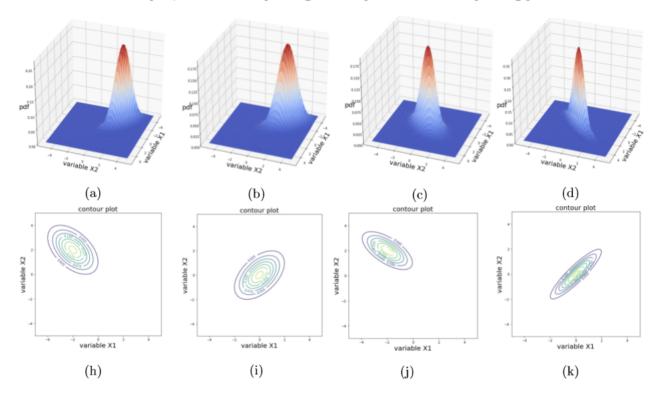
$$m{X} = egin{bmatrix} X_1 \ X_2 \end{bmatrix} \hspace{1cm} m{\mu} = egin{bmatrix} \mu_1 \ \mu_2 \end{bmatrix} \hspace{1cm} m{\Sigma} = egin{bmatrix} \sigma_1^2 & Cov[X_1,X_2] \ Cov[X_1,X_2] & \sigma_2^2 \end{bmatrix}$$

e-22 * General shape of Gaussian: Something something * What affects the pointy-ness? The pointy-ness of the peak is determined by the factor of multiplication with x2 (so here, 1/252) Makes sense: smaller D => concentrated in one place, pointier graph. * What affects position? The addition factor on 2 (so here -y) → if mean is 5, then at x-5=0 we will have the tip of the curve. Makes sense.

1. For each surface plot, (1) find the corresponding contour plot (2) use the plotting tool provided to find the parameter (μ, Σ) of the distribution.



2. For each surface plot, find the corresponding contour plot and the corresponding parameters.



$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{aligned} & (\mathbf{x}) & (\mathbf{y}) & (\mathbf{z}) & (\mathbf{w}) \\ & \boldsymbol{\mu} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} & \boldsymbol{\mu} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} & \boldsymbol{\mu} = \begin{bmatrix} -2 \\ 2 \end{bmatrix} & \boldsymbol{\mu} = \begin{bmatrix} -2 \\ 2 \end{bmatrix} \\ & \boldsymbol{\Sigma} = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} & \boldsymbol{\Sigma} = \begin{bmatrix} 1 & 0.9 \\ 0.9 & 1 \end{bmatrix} & \boldsymbol{\Sigma} = \begin{bmatrix} 1 & -0.5 \\ -0.5 & 1 \end{bmatrix} & \boldsymbol{\Sigma} = \begin{bmatrix} 1 & -0.5 \\ -0.5 & 0.6 \end{bmatrix} \end{aligned}$$

(z)

$$\mu = egin{bmatrix} -2 \ 2 \end{bmatrix}$$
 $\Sigma = egin{bmatrix} 1 & -0.5 \ -0.5 & 0.6 \end{bmatrix}$

$$(a) \rightarrow (j) \rightarrow (w)$$

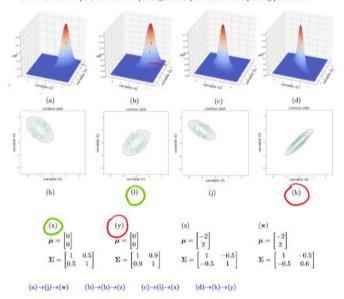
$$(b)\rightarrow(h)\rightarrow(z)$$

$$(c)\rightarrow(i)\rightarrow(x)$$

$$(d) \rightarrow (k) \rightarrow (y)$$

* This type of question can come in your exams/quizzes: " predict y and & based on graph of Gaussian. Just remember what makes it pointy and what displaces it! * Also, visualization beyond 3D is impossible for most people so don't worry about it.

2. For each surface plot, find the corresponding contour plot and the corresponding parameters,



The pointy-ness along the diagonal representing $(x_1 = x_2)$ shows the magnitude of $Cov(x_1, x_2)$. If $Cov(x_1, x_2)$ is high the graph is more concentrated along that diagonal. If $Cov(x_1, x_2)$ is negative, direction of diagonal is reversed; i.e., $(x_1 = -x_2)$