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K Covrelgted / Uncorrelated  exents

X and Y ane wncorrelared fﬁ—‘CDVancwnu

Cou (x,9)= E[X7]- BxIECY]

Co yyelaked Ex aumple.;

For an example, suppose X and Y can take on the joint values (expressed as
ordered pairs (0,0), (1,0), and (1,1) with equal probability. Then for any of the three
possible points (2,¥), P((X,Y) = (z,y)) = 1/3. We will find the covariance
between these two random variables.

The first step is to calculate the mean of each individual random variable. X only
takes on two values, 0 and 1, with probability 1/3 and 2/3 respectively. (Remember
that two of the points have X = 1, with each of those probabilities as 1/3.) Then

E[X]=0-1/3+1-2/3=2/3

Similarly, E[Y] =0-2/3 4+ 1-1/3 = 1/3. Now, we must calculate the expected
value of the product of X and Y. That product can take on values 0 or 1 (multiply
the elements of each ordered pair together) with respective probabilities 2/3 and
1/3. These probabilities are obtained the same way as for the individual
expectations. Thus,

E(XY|=0-2/3+1-1/3=1/3
Finally, we put it all together:

Cov(X,Y) = E[XY] - E[X]E[Y] = % ..

(x,v):o

u N coxvrelaked E:XQJMPUL

Let's take X and Y to exist as an ordered pair at the points (-1,1), (0,0), and (1,1)
with probabilities 1/4, 1/2, and 1/4. Then E[X]|= ~1-1/4+0-1/2+1-
1/4=0= E[Y]and

EXY]=-1-1/4+0-1/2+1-1/4=0= E[X]E[Y]
and thus X and Y are uncorrelated.

Exencise : See £ Jchc_.j>re Tn):lq:endem&ﬂ
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In a public university, 51% of the students are females. One adult is randomly
selected for a survey. It turned out later that the selected survey subject was
studying sciences. Also, 10% of female students study sciences while 5% of males
study sciences. What is the probability that the selected subject is a female? Let’s
use the following notations:

F = female

F' = male

S = study sciences

§' = study other fields
P(F)=
P(F')=
P(S|F)=
P(SIF)=

We want ?7?

SOL:

P(F)=0.51 because 51% of students are females

P(F')=0.49 because 49% of students are males

P(S|F)=0.1 because 10% of the female students study sciences
P(S|F')=0.05 because 5% of the male students study sciences

— e — —

We want P(F|9)

answer = (0.1 *0.51) /7 (0.1*0.51 + 0.05*0.49) = 0.6755
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3 Gaussian Distribution

Review: 1-D Gaussian Distribution

The probability density function of A'(j,o?) is given by:

-

2
P\ 1,0 ) =
( ) 2mo?

Multivariate Gaussian Distribution

The multivariate Gaussian distribution in M dimensions is parameterized by a mean vector p € RM and a
covariance matrix ¥ € RM*M where ¥ is a symmetric and positive-definite. This distribution is denoted
by N(u,X), and its probability density function is given by:

p(; p, X) = m exp —%(-’” —p)'E (e - #)]

where || denotes the determinant of 3.
Let X = [X1, X2, ..., X;u]T be a vector-valued random variable where X = [X1, X2, ..., X;u]T ~ N (11, 2).
Then, we have:

CO’U[X],X1] = V(IJ'[X]] CO’U[X],le CO’U[X],XM]
CO’U[XQ,X]] CO’U[Xz,XQ] = V(LT'[XQ] CO’U[XQ,XM]
¥ =Cov[X] = . ) ) .
Cov| X m, X1] Cov[ X, Xal coo Cov[ Xy, Xy = Var[Xul

Note: Any arbitrary covariance matrix is positive semi-definite. However, since the pdf of a multivariate
Gaussian requires ¥ to have a strictly positive determinant, 3 has to be positive definite.

In order to get get an intuition for what a multivariate Gaussian is, consider the simple case where M = 2.
Then, we have:

o X] M . 0'% COU[X],XZ]
X = [Xg] b= [ug] x= [Cm)[Xl,Xz] o2
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1. For each surface plot, (1) find the corresponding contour plot (2) use the plotting tool provided to find

the parameter(u, X) of the distribution.

(a) (b)
| G N

et .

pat | ol

(x)

contour plot

s ‘/:\\_' 5
S/
) ) vanal;le X1 : variat;:le X1 '
(a) = (2) (b) = (y)
k=195 H= 25
0.1 0 L0
2_[0 1] 2_[0 0.6]
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2. For each surface plot, find the corresponding contour plot and the corresponding parameters.

L m“ B
va(rl}all;le x1 v..;.i.;,xx ; ,,(:;;.! X1 vo(rll:;leXI
(x) (¥) (2) (w)
o b o]
x= [0%5 015] ¥ = [0?9 019] ¥ = [—(1).5 _(1) 5] ¥ = [—(1).5 _0065]
(@)—=0)—=w)  (b)=M)=)  (=20-=K)  ([@)-=E)-()
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2. For saeh wiefuee plot, God the corcesponding contonr plot aod the cormmspomling parameters,
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