
10-315 Recitation #2
Convexity & Optimization



What is optimization?

● Different kinds of optimization 
problems in mathematics

○ LPs, IPs, zeroes and optima of 
functions

● In this class we’re mostly 
concerned with finding local and 
global optima

○ Coordinate descent, gradient 
descent, interpolating polynomials 
(later on in class)



● Definition:

Partial derivative: taking the derivative with respect to one variable
● Simplifying assumption: variables are not dependent on each other, so derivative of x_2 with respect to x_1 is 0

Gradients
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● Definition:

Partial derivative: taking the derivative with respect to one variable
● Simplifying assumption: variables are not dependent on each other, so derivative of x_2 with respect to x_1 is 0

Gradients

● The gradient is a vector giving the rate of change in function value with respect to each variable
● An intuitive way to think about the gradient is as the vector that gives the direction of fastest increase
● https://www.geogebra.org/3d?lang=en      --      (f, (1, 2, 2.5))
● So we see the gradient shows us the direction of fastest increase, but what if we wanted to go backwards, 

towards the minimum?

https://www.geogebra.org/3d?lang=en


Gradient Descent Algorithm
● Travel in reverse direction -- the direction of greatest decrease
● Update rule: x_new = x_old – 𝜂 * ∇ f(x_old)
● How far should we travel in each step given that we don’t know where the minimum is?

○ Learning rate denoted by  eta (𝜂)
● https://suniljangirblog.wordpress.com/2018/12/03/the-outline-of-gradient-descent/ 

(visualized)
● Choice of learning rate can 

be very important
● Definition of convergence 

for solvers
● Algorithm relies on 

convexity

https://suniljangirblog.wordpress.com/2018/12/03/the-outline-of-gradient-descent/


Convexity

● But why does 
convexity matter for 
optimization?



Why Convexity Matters
● Convexity 

guarantees that 
gradient 
descent will 
approach an 
optimum

● Without this 
guarantee, 
gradient 
descent may 
never converge



Stochastic Gradient Descent
● Normal gradient descent uses batches of data (often the entire dataset) to 

determine the gradient in each step
● For large datasets this can be very expensive
● We can also randomly select one data point at each iteration to use for 

computing the gradient
● This will be less accurate at each step, but in expectation each step should 

still be towards the optimum



Normal GD vs. SGD
              batch-based GD    single sample SGD



Example Problems
Compute the gradient of this function: f(x , y) = x^2 + 2y^2
1. Starting at the point (4, 1), run four iterations of gradient descent using the learning 

parameter 𝜂 = 0.25.
2. Starting at the point (6, 2), run four iterations of gradient descent using the learning 

parameter 𝜂 = 0.5.
3. Let f(x, y) = 1.783(x-2)^2 + 2.481(y+3)^2. Starting at the point (37.4, 90.2), run gradient 

descent using the learning parameter 𝜂 = 0.1 until you get within 0.001 of the function 
minimum.

*update rule: x_new = x_old – 𝜂 * ∇ f(x_old)



Conditional Independence

● Knowing that C has occurred, A and B have no impact on each other
● Not the same as regular independence
● Regular independence implies conditional independence, converse is not true
● Important in ML -- we assume data rows are conditionally independent given some set of parameters

○ Each row is some observation from a distribution. We assume these observations are independent 
given the underlying parameters (example in next slide)



Concavity of Bernoulli Likelihood



Concavity of Bernoulli Likelihood



Concavity of Bernoulli Likelihood



Concavity of Bernoulli Likelihood


