10-315 Recitation #2

Convexity & Optimization

What is optimization?

- Different kinds of optimization problems in mathematics
	- LPs, IPs, zeroes and optima of functions
- In this class we're mostly concerned with finding local and global optima
	- Coordinate descent, **gradient descent**, interpolating polynomials (later on in class)

Gradients

• Definition:
$$
\nabla f(\mathbf{x}) = \langle \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \dots, \frac{\partial}{\partial x_n} \rangle f(x)
$$

Partial derivative: taking the derivative with respect to one variable

● Simplifying assumption: variables are not dependent on each other, so derivative of x_2 with respect to x_1 is 0

Example: let $f(\mathbf{x}) = \frac{x_1^2}{2} + \frac{x_2^2}{2}$ ………...………...………...………...………./…….……….... $\nabla f(\mathbf{x}) =$

What is the gradient of f at $(1,2)$?

Gradients

• Definition:
$$
\nabla f(\mathbf{x}) = \langle \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, ..., \frac{\partial}{\partial x_n} \rangle f(x)
$$

Partial derivative: taking the derivative with respect to one variable

• Simplifying assumption: variables are not dependent on each other, so derivative of x_2 with respect to x_1 is 0

Example: let $f(\mathbf{x}) = \frac{x_1^2}{2} + \frac{x_2^2}{2}$
 $\nabla f(\mathbf{x}) = \langle \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2} \rangle \cdot (\frac{x_1^2}{2} + \frac{x_2^2}{2}) = \langle \frac{\partial}{\partial x_1} (\frac{x_1^2}{2} + \frac{x_2^2}{2}), \frac{\partial}{\partial x_2} (\frac{x_1^2}{2} + \frac{x_2^2}{2}) \rangle = \langle (x_1 + 0), (0 + x_2) \rangle = \langle x_1, x_2 \rangle$

What is the gradient of f at $(1,2)$?

Gradients

• Definition:
$$
\nabla f(\mathbf{x}) = \langle \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, ..., \frac{\partial}{\partial x_n} \rangle f(x)
$$

Partial derivative: taking the derivative with respect to one variable

• Simplifying assumption: variables are not dependent on each other, so derivative of x_2 with respect to x_1 is 0

Example: let $f(\mathbf{x}) = \frac{x_1^2}{2} + \frac{x_2^2}{2}$ $\nabla f(\mathbf{x}) = \langle \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2} \rangle \cdot (\frac{x_1^2}{2} + \frac{x_2^2}{2}) = \langle \frac{\partial}{\partial x_1} (\frac{x_1^2}{2} + \frac{x_2^2}{2}), \frac{\partial}{\partial x_2} (\frac{x_1^2}{2} + \frac{x_2^2}{2}) \rangle = \langle (x_1 + 0), (0 + x_2) \rangle = \langle x_1, x_2 \rangle$

What is the gradient of f at $(1,2)$? $\nabla f(1,2) = \langle x_1, x_2 \rangle(1,2) = \langle 1, 2 \rangle$

- The gradient is a vector giving the rate of change in function value with respect to each variable
- An intuitive way to think about the gradient is as the vector that gives the direction of fastest increase
- \bullet <https://www.geogebra.org/3d?lang=en>-- $(f, (1, 2, 2.5))$
- So we see the gradient shows us the direction of fastest increase, but what if we wanted to go backwards, towards the minimum?

Gradient Descent Algorithm

- Travel in reverse direction -- the direction of greatest decrease
- Update rule: x new = x old η * ∇ f(x old)
- How far should we travel in each step given that we don't know where the minimum is?
	- \circ Learning rate denoted by eta (η)
- <https://suniljangirblog.wordpress.com/2018/12/03/the-outline-of-gradient-descent/> (visualized)
- Choice of learning rate can be very important
- Definition of convergence for solvers
- Algorithm relies on convexity

Convexity

 f is called convex if:

 $\forall x_1,x_2\in X, \forall t\in [0,1]$:

$$
f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2)
$$

● But why does convexity matter for optimization?

Stochastic Gradient Descent

- Normal gradient descent uses batches of data (often the entire dataset) to determine the gradient in each step
- For large datasets this can be very expensive
- We can also randomly select one data point at each iteration to use for computing the gradient
- This will be less accurate at each step, but in expectation each step should still be towards the optimum

Normal GD vs. SGD

batch-based GD single sample SGD

Example Problems

Compute the gradient of this function: $f(x, y) = x^2 + 2y^2$

- 1. Starting at the point (4, 1), run four iterations of gradient descent using the learning parameter $n = 0.25$.
- 2. Starting at the point (6, 2), run four iterations of gradient descent using the learning parameter $n = 0.5$.
- 3. Let $f(x, y) = 1.783(x-2)^2 + 2.481(y+3)^2$. Starting at the point (37.4, 90.2), run gradient descent using the learning parameter $n = 0.1$ until you get within 0.001 of the function minimum.

*update rule: x_new = x_old – η * ∇ f(x_old)

Conditional Independence

A and B are conditionally independent given C if $P(A \cap B|C) = P(A|C)P(B|C)$ Equivalently, A and B are conditionally independent given C if $P(A|B \cap C) = P(A|C)$

- Knowing that C has occurred, A and B have no impact on each other
- Not the same as regular independence
- Regular independence implies conditional independence, converse is not true
- Important in ML -- we assume data rows are conditionally independent given some set of parameters
	- Each row is some observation from a distribution. We assume these observations are independent given the underlying parameters (example in next slide)

 $L(\theta) = p(X_1, X_2, ..., X_n | \theta)$

$$
L(\theta) = p(X_1, X_2, ..., X_n | \theta)
$$

= $p(X_1 | \theta) p(X_2 | \theta) ... p(X_n | \theta)$
= $\Pi_{i=1}^n p(X_i | \theta)$
= $\Pi_{i=1}^n \theta^{X_i} (1 - \theta)^{1 - X_i}$

$$
L(\theta) = p(X_1, X_2, ..., X_n | \theta)
$$

= $p(X_1 | \theta) p(X_2 | \theta) ... p(X_n | \theta)$
= $\Pi_{i=1}^n p(X_i | \theta)$
= $\Pi_{i=1}^n \theta^{X_i} (1 - \theta)^{1 - X_i}$
 $\Rightarrow \log(L(\theta)) = \sum_{i=1}^n \log \theta^{X_i} (1 - \theta)^{1 - X_i}$
= $\sum_{i=1}^n X_i \log \theta + (1 - X_i) \log(1 - \theta)$
= $(\sum_{i=1}^n X_i) \log \theta + (n - \sum_{i=1}^n X_i) \log(1 - \theta)$

$$
L(\theta) = p(X_1, X_2, ..., X_n | \theta)
$$

\n
$$
= p(X_1 | \theta) p(X_2 | \theta) ... p(X_n | \theta)
$$

\n
$$
= \Pi_{i=1}^n p(X_i | \theta)
$$

\n
$$
= \Pi_{i=1}^n \theta^{X_i} (1 - \theta)^{1 - X_i}
$$

\n
$$
\Rightarrow \log(L(\theta)) = \sum_{i=1}^n \log \theta^{X_i} (1 - \theta)^{1 - X_i}
$$

\n
$$
= \sum_{i=1}^n X_i \log \theta + (1 - X_i) \log(1 - \theta)
$$

\n
$$
= (\sum_{i=1}^n X_i) \log \theta + (n - \sum_{i=1}^n X_i) \log(1 - \theta)
$$

\n
$$
\Rightarrow \frac{\partial}{\partial \theta} \log(L(\theta)) = \frac{1}{\theta} \sum_{i=1}^n X_i - (n - \sum_{i=1}^n X_i) \frac{1}{1 - \theta}
$$

\n
$$
\Rightarrow \frac{\partial^2}{\partial \theta^2} \log(L(\theta)) = -\frac{1}{\theta^2} \sum_{i=1}^n X_i - (n - \sum_{i=1}^n X_i) \frac{1}{(1 - \theta)^2}
$$

\nBut we know $\theta \in (0, 1), 0 \le \sum_{i=1}^n X_i \le n$
\nSo we conclude $\frac{\partial^2}{\partial \theta^2} \log(L(\theta)) < 0$
\n
$$
\Rightarrow
$$
 the Bernoulli likelihood function is concave down.