10-315 Recitation #2

Convexity & Optimization



What is optimization?

e Different kinds of optimization

problems in mathematics
o LPs, IPs, zeroes and optima of
functions

e |n this class we’re mostly
concerned with finding local and

global optima

o Coordinate descent, gradient
descent, interpolating polynomials
(later on in class)

A Mon-Convex Combination of Gaussian Distnbutions

v nf

T A Local '

Maxicjom ..



Gradients
e Definition: Vf(X) = < 9 0 3 sy ()(l)”>f(l)

dxq? Oxo

Partial derivative: taking the derivative with respect to one variable
e  Simplifying assumption: variables are not dependent on each other, so derivative of x_2 with respectto x_1is 0

2

Example: let f(x) = '—,T + =
es

What is the gradient of

Vf(1,2) =




Gradients - |
e Definition: Vf(X) — < g ? veuy (')fzn>f("1")

Oxq,? Oxo’

Partial derivative: taking the derivative with respect to one variable
e  Simplifying assumption: variables are not dependent on each other, so derivative of x_2 with respectto x_1is 0

Example: let f(x) = % + %
Vfx)= <% t) s (B )= <ﬁ(71 fite), ﬁ(jl + 2)) = {(x1+0), (0 + x2)) = (1, 2)

What is the eradient of f :

Vf(1,2) =




Gradients - |
e Definition: Vf(X) — <3(:Zl’ 822’ vawy %>f(£)

Partial derivative: taking the derivative with respect to one variable
e  Simplifying assumption: variables are not dependent on each other, so derivative of x_2 with respectto x_1is 0

Example: let f(x) = % + % S
Vix) ={g35) (3 +3)=ZEF +3) 5F +3) = {21 +0), (0 +22)) = {21, 22)

o b

What is the gradient of f at (1,2)?
Vf(1;2) ={a:%)(1:2) = (1:2)

The gradient is a vector giving the rate of change in function value with respect to each variable

An intuitive way to think about the gradient is as the vector that gives the direction of fastest increase
https://www.geogebra.org/3d?lang=en - (f, (1, 2, 2.5))

So we see the gradient shows us the direction of fastest increase, but what if we wanted to go backwards,
towards the minimum?



https://www.geogebra.org/3d?lang=en

Gradient Descent Algorithm

Travel in reverse direction -- the direction of greatest decrease
Update rule: x_ new =x_old —n * V f(x_old)
e How far should we travel in each step given that we don’t know where the minimum is?
o Learning rate denoted by eta (n)
e https://suniljangirblog.wordpress.com/2018/12/03/the-outline-of-gradient-descent/

(visualized)
e Choice of learning rate can 3| :
be very important 21 - /
e Definition of convergence 1 Wi it
for solvers ,_‘/ S
e Algorithm relies on . 41/[ 2 4 6
2

convexity


https://suniljangirblog.wordpress.com/2018/12/03/the-outline-of-gradient-descent/

Convexity

f is called convex if:

Vz,,z9 € X,V € [0, 1] :

But why does
convexity matter for
optimization?

tf (x1) + (L= 1)f (22)

[tz + (1= t)zs)

f(tzy + (1

t)zs) < tf(z1) + (1

t)f(z2)

f(z)

/-

€y

try + (1 —t)xo
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Why Convexity Matters

e Convexity
guarantees that
gradient
descent will
approach an
optimum

e Without this
guarantee,
gradient
descent may
never converge

tf (@) + (1 - 6)f (x2)

f(t;z;l + (1 — t)w?) S
4-—




Stochastic Gradient Descent

e Normal gradient descent uses batches of data (often the entire dataset) to
determine the gradient in each step

e For large datasets this can be very expensive

e \We can also randomly select one data point at each iteration to use for
computing the gradient

e This will be less accurate at each step, but in expectation each step should
still be towards the optimum



Normal GD vs. SGD

batch-based GD single sample SGD

o)



Example Problems

Compute the gradient of this function: f(x , y) = x"2 + 2y"2

1. Starting at the point (4, 1), run four iterations of gradient descent using the learning
parameter n = 0.25.

2. Starting at the point (6, 2), run four iterations of gradient descent using the learning
parameter n = 0.5.

3. Letf(x,y)=1.783(x-2)"2 + 2.481(y+3)"2. Starting at the point (37.4, 90.2), run gradient
descent using the learning parameter n = 0.1 until you get within 0.001 of the function
minimum.

*update rule: x_new =x_old — 5 * V f(x_old)



Conditional Independence

A and B are conditionally independent given C' if P(AN B|C') = P(A|C)P(B|C)
Equivalently, A and B are conditionally independent given C if P(A|BNC) = P(A

C)

Knowing that C has occurred, A and B have no impact on each other
Not the same as regular independence
Regular independence implies conditional independence, converse is not true
Important in ML -- we assume data rows are conditionally independent given some set of parameters
o Each row is some observation from a distribution. We assume these observations are independent
given the underlying parameters (example in next slide)



Concavity of Bernoulli Likelihood




Concavity of Bernoulli Likelihood

L(8) = p(X,, X5, ..., X,,|0)
= p(X1|0)p(X2|0)...p(Xn|6)
= 1L, p(X:|0)

= II" 6% (1 — §)1-*




Concavity of Bernoulli Likelihood

L(0) = p(X1, X, ..., X,,|0)

= p(X1]|0)p(X2|0)...p( X |6)

= L, p(X;|0)

St H:.:]H.\A{.l _ H‘]] Xi

= log(L(#)) = Y i, log 6*:(1 — )~
=Y ", Xilogf+ (1 — X;)log(1l —6)

= (3", Xi)logf+ (n— " X;)log(1 — 6)




Concavity of Bernoulli Likelihood

L(0) = p(X1, X, ..., X,|0)
= p(X1|0)p(X2|0)...p(Xn|6)
=H, 119( 10)

= l)&([;(e)) — Z:l:l l()g 9-\1(1 ;2 9)1~.¥‘-

= i1 Xilogf + (1 — X;) log(1 — 6)

= (Z X; )l()g@ (n — Zi: /\' ) log(1 — 6)
log 02:‘ ; \' —(n—Xr, X

= B0 = 3T, % 0= Ko

0..
But we know # e (() 1), O s Xk n

So we conclude 5 l();:,(L(H)) <0
= the Bun()ulll llk( lihood function is concave down.



