
10-315 Intro to Machine Learning HW2

INSTRUCTIONS

• Due: October 13, 2021 at 11:59 PM EDT.

• Format: Complete this pdf with your work and answers. Whether you edit the latex source, use a pdf
annotator, or hand write / scan, make sure that your answers (tex’ed, typed, or handwritten) are within the
dedicated regions for each question/part. If you do not follow this format, we may deduct points.

• How to submit: Submit a pdf with your answers on Gradescope. Log in and click on our class 10-315, click
on the appropriate Written assignment, and upload your pdf containing your answers. Don’t forget to submit
the associated Programming component on Gradescope if there is any programming required.

• Policy: See the course website for homework policies and Academic Integrity.

Name

Andrew ID

Hours to complete
(both written and
programming)?

2

Q1. [43 pts] Example Feed Forward and Backpropagation

1

x1

x2

x3

x4

x5

x6

a1

a2

a3

a4

z1

z2

z3

z4

1

b1

b2

b3

ŷ1

ŷ2

ŷ3

α1,0

β1,0

Figure 1: A One Hidden Layer Neural Network

Network Overview Consider the neural network with one hidden layer shown in Figure 1. The input layer
consists of 6 features x = [x1, ..., x6]T , the hidden layer has 4 nodes z = [z1, ..., z4]T , and the output layer is a
probability distribution y = [y1, y2, y3]T over 3 classes. We also add a bias to the input, x0 = 1 and the hidden layer
z0 = 1, both of which are fixed to 1.

α is the matrix of weights from the inputs to the hidden layer and β is the matrix of weights from the hidden layer
to the output layer. αj,i represents the weight going to the node zj in the hidden layer from the node xi in the input
layer (e.g. α1,2 is the weight from x2 to z1), and β is defined similarly. We will use a sigmoid activation function for
the hidden layer and a softmax for the output layer.

Network Details Equivalently, we define each of the following.

The input:

x = [x1, x2, x3, x4, x5, x6]T (1)

Linear combination at the first (hidden) layer:

aj = αj,0 +

6∑
i=1

αj,i ∗ xi, ∀j ∈ {1, . . . , 4} (2)

Activation at the first (hidden) layer:

zj = σ(aj) =
1

1 + exp(−aj)
, ∀j ∈ {1, . . . , 4} (3)

3

Linear combination at the second (output) layer:

bk = βk,0 +

4∑
j=1

βk,j ∗ zj , ∀k ∈ {1, . . . , 3} (4)

Activation at the second (output) layer:

ŷk =
exp(bk)
3∑
l=1

exp(bl)

, ∀k ∈ {1, . . . , 3} (5)

Note that the linear combination equations can be written equivalently as the product of the weight matrix with the
input vector. We can even fold in the bias term α0 by thinking of x0 = 1, and fold in βj,0 by thinking of z0 = 1.

Loss We will use cross entropy loss, `(ŷ,y). If y represents our target output, which will be a one-hot vector
representing the correct class, and ŷ represents the output of the network, the loss is calculated by:

`(ŷ,y) = −
3∑
i=1

yi log(ŷi) (6)

For the below questions use natural log in the equation.

Prediction When doing prediction, we will predict the argmax of the output layer. For example, if ŷ1 = 0.3, ŷ2 =
0.2, ŷ3 = 0.5 we would predict class 3. If the true class from the training data was 2 we would have a one-hot vector
y with values y1 = 0, y2 = 1, y3 = 0.

(a) In the following questions you will derive the matrix and vector forms of the previous equations which define
our neural network. These are what you should hope to program in order to keep your program under the
Autolab time-out.

When working these out, it is important to keep a note of the vector and matrix dimensions in order for
you to easily identify what is and isn’t a valid multiplication. Suppose you are given a training example:
x(1) = [x1, x2, x3, x4, x5, x6]T with label class 2, so y(1) = [0, 1, 0]T . We initialize the network weights as:

α∗ =

α1,1 α1,2 α1,3 α1,4 α1,5 α1,6

α2,1 α2,2 α2,3 α2,4 α2,5 α2,6

α3,1 α3,2 α3,3 α3,4 α3,5 α3,6

α4,1 α4,2 α4,3 α4,4 α4,5 α4,6

β∗ =

β1,1 β1,2 β1,3 β1,4
β2,1 β2,2 β2,3 β2,4
β3,1 β3,2 β3,3 β3,4

We want to also consider the bias term and the weights on the bias terms (αj,0 and βk,0). To account for these
we can add a new column to the beginning of our initial weight matrices.

α =

α1,0 α1,1 α1,2 α1,3 α1,4 α1,5 α1,6

α2,0 α2,1 α2,2 α2,3 α2,4 α2,5 α2,6

α3,0 α3,1 α3,2 α3,3 α3,4 α3,5 α3,6

α4,0 α4,1 α4,2 α4,0 α4,4 α4,5 α4,6

4

β =

β1,0 β1,1 β1,2 β1,3 β1,4
β2,0 β2,1 β2,2 β2,3 β2,4
β3,0 β3,1 β3,2 β3,3 β3,4

And we can set our first value of our input vectors to always be 1 (x

(i)
0 = 1), so our input becomes:

x(1) = [1, x1, x2, x3, x4, x5, x6]T

(i) [1 pt] What is the vector a whose elements are made up of the entries aj in equation (2). Write your
answer in terms of α and x(1).

(ii) [1 pt] What is the vector z whose elements are made up of the entries zj in equation (3)?

(iii) [1 pt] Select one: We cannot take the matrix multiplication of our weights β and our vector z since they
are not compatible shapes. Which of the following would allow us to take the matrix multiplication of β
and z such that the entries of the vector b = β z are equivalent to the values of bk in equation (4)?

© A) Remove the last column of β

© B) Remove the first row of z

© C) Append a value of 1 to be the first entry of z

© D) Append an additional column of 1’s to be the first column of β

© E) Append a row of 1’s to be the first row of β

© F) Append a row of 1’s to be the first row of β

5

(b) We will now derive the matrix and vector forms for the backpropagation algorithm.

We start by defining

∂`

∂α
=

∂`
∂α10

∂`
∂α11

. . . ∂`
∂α16

∂`
∂α20

∂`
∂α21

. . . ∂`
∂α26

...
...

. . .
...

∂`
∂α40

∂`
∂α41

. . . ∂`
∂α46

The mathematics which you have to derive in this section jump significantly in difficultly, you should always be
examining the shape of the matrices and vectors and making sure that you are comparing your matrix elements
with calculations of individual derivatives to make sure they match (e.g. the element of the matrix (∂`∂α)2,1
should be equal to ∂`

∂α2,1
). Recall that ` is our loss function defined in equation (6)

(i) [3 pts] The derivative of the softmax function with respect to bk is as follows:

∂ŷl
∂bk

= ŷl(I[k = l]− ŷk)

where I[k = l] is an indicator function such that if k = l then it it returns value 1 and 0 otherwise. Using
this, write the derivative ∂`

∂bk
in a smart way such that you do not need this indicator function? Write

your solutions in terms of ŷk and yk only.

∂`
∂bk

:

(ii) [3 pts] What is the derivative ∂`
∂β ? Your answer should be in terms of ∂`

∂b and z(1) where z(1) =

[1, z1, z2, z3, z4]T .

You should first consider a single entry in this matrix: ∂`
∂βkj

.

∂`
∂β :

(iii) [1 pt] Explain in one short sentence why must we go back to using the matrix β∗ (The matrix β without
the first column of β) when calculating the matrix ∂`

∂α?

6

(iv) [3 pts] What is the derivative ∂`
∂z? Your answer should be in terms of ∂`

∂b and β∗

∂`
∂z :

(v) [1 pt] What is the derivative ∂`
∂aj

in terms of ∂`
∂zj

and zj

∂`
∂aj

:

(vi) [3 pts] What is the matrix ∂`
∂α? Your answer should be in terms of ∂`

∂a and x(1).

∂`
∂α :

7

(c) Now you will put these equations to use in an example with numerical values. You should use the answers
you get here to debug your code.

You are given a training example x(1) = [1, 1, 0, 0, 1, 1]T with label class 2, so y(1) = [0, 1, 0]T . We initialize
the network weights as:

α∗ =

1 2 −3 0 1 −3
3 1 2 1 0 2
2 2 2 2 2 1
1 0 2 1 −2 2

β∗ =

1 2 −2 1
1 −1 1 2
3 1 −1 1

We want to also consider the bias term and the weights on the bias terms (αj,0 and βj,0). Lets say they are all
initialized to 1. To account for this we can add a column of 1’s to the beginning of our initial weight matrices.

α =

1 1 2 −3 0 1 −3
1 3 1 2 1 0 2
1 2 2 2 2 2 1
1 1 0 2 1 −2 2

β =

1 1 2 −2 1
1 1 −1 1 2
1 3 1 −1 1

And we can set our first value of our input vectors to always be 1 (x

(i)
0 = 1), so our input becomes:

x(1) = [1, 1, 1, 0, 0, 1, 1]T

Using the initial weights, run the feed forward of the network over this example (rounding to 4 decimal places
during the calculation) and then answer the following questions.

Showing your work in these questions is optional, but it is recommended to help us understand where any
misconceptions may occur.

(i) [1 pt] What is a1?

a1: Work:

(ii) [1 pt] What is a2?

a2: Work:

8

(iii) [1 pt] What is z1?

z1: Work:

(iv) [2 pts] What is z3?

z3: Work:

(v) [2 pts] What is b1?

b1: Work:

(vi) [2 pts] What is b2?

b2: Work:

(vii) [1 pt] What is ŷ2?

ŷ2: Work:

(viii) [3 pts] Which class would we predict on this example? Your answer should just be an integer ∈ {1, 2, 3}.
Class: Work:

(ix) [1 pt] What is the total loss on this example?

Loss: Work:

9

(d) Now use the results of the previous question to run backpropagation over the network and update the weights.
Use learning rate η = 1.

Do your backpropagation calculations rounding to 4 decimal places then answer the following questions. Show-
ing your work in these questions is optional, but it is recommended to help us understand where any miscon-
ceptions may occur.

(i) [2 pts] What is the value of ∂`
∂β1,0

?

∂`
∂β1,0

: Work:

(ii) [1 pt] What is the updated value of the weight β1,0?

β1,0: Work:

(iii) [2 pts] What is the updated value of the weight α3,4?

α3,4: Work:

10

(iv) [7 pts] What is the updated weight of the input layer bias term applied to z2 (i.e. α2,0:)?

α2,0: Work:

11

Q2. [12 pts] Programming (continued)

The following questions should be completed after you work through the programming portion of this assignment.
The programming portion will be worth 45 points.

For these questions, use the large dataset. Use the following values for the hyperparameters unless otherwise
specified:

Parameter Value
Number of Hidden Units 50

Weight Initialization Random
Learning Rate 0.01

Please submit computer-generated plots for (a(i)) and (b(i)). Include any code required to produce these results in
additional code.py when submitting the programming component. Note: we expect it to take about 5 minutes
to train each of these networks.

(a) Hidden Units

(i) [5 pts] Train a single hidden layer neural network using the hyperparameters mentioned in the table
above, except for the number of hidden units which should vary among 5, 20, 50, 100, and 200. Run the
optimization for 100 epochs each time.

Plot the average training cross-entropy (sum of the cross-entropy terms over the training dataset divided
by the total number of training examples) on the y-axis vs number of hidden units on the x-axis. In the
same figure, plot the average validation cross-entropy.

Plot:

(ii) [2 pts]

Examine and comment on the the plots of training and validation cross-entropy. What is the effect of
changing the number of hidden units?

Answer:

12

(b) Learning Rate

(i) [3 pts] Train a single hidden layer neural network using the hyperparameters mentioned in the table above,
except for the learning rate which should vary among 0.1, 0.01, and 0.001. Run the optimization for 100
epochs each time.

Plot the average training cross-entropy on the y-axis vs the number of epochs on the x-axis for the
mentioned learning rates. In the same figure, plot the average validation cross-entropy loss. Make a
separate figure for each learning rate.

Plot LR 0.1:

Plot LR 0.01:

13

Plot LR 0.001:

(ii) [2 pts] Examine and comment on the the plots of training and validation cross-entropy. How does adjusting
the learning rate affect the convergence of cross-entropy of each dataset?

Answer:

14

Collaboration Questions
After you have completed all other components of this assignment, report your answers to the collaboration policy
questions detailed in the Academic Integrity Policies found on the course site.

1. Did you receive any help whatsoever from anyone in solving this assignment? If so, include full details.

2. Did you give any help whatsoever to anyone in solving this assignment? If so, include full details?

3. Did you find or come across code that implements any part of this assignment ? If so, include full details.

