10-601 Machine Learning, Fall 2011: Homework 3

Machine Learning Department
Carnegie Mellon University

Due: October 17, 5 PM

Instructions There are 3 questions on this assignment. Please submit your completed homework to Sharon
Cavlovich (GHC 8215) by 5pm, Monday, October 17. Submit your homework as 3 separate sets of pages,
one for each question (so the TA’s can easily split it up for grading). Include your name and email address
on each set.

1

Short Questions [Shing-hon Lau, 10 points]

Here are some short questions to check your basic understanding of course material.

1.

[2 pts] True or False? If we train a Naive Bayes classifier using infinite training data that satisfies
all of its modeling assumptions, then it will achieve zero training error over these training examples.
Please justify your answer in one sentence.

% SOLUTION: This statement is false since there will still be unavoidable error. If the true probability
of P(X; =1,Xo=1]Y =0)=0.1 and P(X; = 1,X, = 1Y = 1) = 0.2, then we will predict Y =1 if
we see X7 =1, X5 = 1. However, we will misclassify points that have X; =1, X5 =1,Y =0.

[2 pts] Prove that P(X1|X2)P(X3) = P(X2|X1)P(X1). (Hint: This is a two-line proof.)
* SOLUTION: P(X,|X5)P(X2) = P(X1 A Xa) = P(Xa]X1)P(X1)

[2 pts] True or False? After we train a logistic regression classifier, we can translate its learned weights
W into the parameters of an equivalent GNB classifier for which we assume o;; = ;. Give a precise
one sentence justification for your answer.

% SOLUTION: This is true. Logistic regression produces a linear classification boundary and Gaus-
sian Naive Bayes (with the equivalent variance assumption) is capable of producing any linear classification
boundary. From a more mathematical perspective, we noted in the class slides (9-29-2011 lecture, page
10) that we can take a GNB classifier (with the variance assumption) and translate its parameters into the
parameters of a logistic regression classifier. We saw here that setting
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produces a logistic regression classifier that is identical to the original GNB classifier. To go in the opposite
direction, choose o; = 1 for convenience. Then, we need only choose ;0 and p;1 such that the expression

on the righthand-side is w;. This can always be done since we have two parameters we can choose.



4.

[4 pts] Consider the plot below showing training and test set accuracy for decision trees of different
sizes, using the same set of training data to train each tree. Describe in one sentence how the training
data curve (solid line) will change if the number of training examples approaches infinity. In a second
sentence, describe what will happen to the test data curve under the same condition.

09 U T T 1 T T I 1 T

0.85

08

0.75

0.7

Accuracy

0.65

06 On training data — .
On test data ———-

0.55 B

0.5 L 1 L 1 1 L 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Size of tree (number of nodes)

% SOLUTION: The training data curve will go down. The test data curve will go up. With infinite
data, we would actually expect these two curves to be on top of each other. The training data curve will
go down since it becomes harder and harder to overfit to statistical concidences in the data as the amount
of training data increases. Thus, our training accuracy will decrease. Once we have infinite data, all of the
statistical concidences no longer exist. The test data curve will increase since we learn a better classifier

(i.e.,

one that isn't overfit to the training data).

Sources of Error [Mladen Kolar, 30 points]

Suppose that we are given an independent and identically distributed sample of n points {y;} where
each point y; ~ N (p, 1) is distributed according to a normal distribution with mean p and variance 1.
You are going to analyze different estimators of the mean u.

(a)

[6 points] Suppose that we use the estimator i = 1 for the mean of the sample, ignoring the
observed data when making our estimate. Give the bias and variance of this estimator . Explain
in a sentence whether this is a good estimator in general, and give an example of when this is a
good estimator.

% SOLUTION: The bias of an estimator is defined as E[ji] — p. Since we have that E[j] = 1,
the bias is 1 — p.

The variance of an estimator is defined as Var(j1) = E[(i — E[f])?]. Therefore, plugging in i = 1,
we have that Var(a) = 0.

This is not a good estimator, since the bias is large when the true value of y is not 1. Usually we don't
have any information about the true value of , so it is unreasonable to assume it is equal to 1.

[4 points] Now suppose that we use i = y; as an estimator of the mean. That is, we use the first
data point in our sample to estimate the mean of the sample. Give the bias and variance of this
estimator fi. Explain in a sentence or two whether this is a good estimator or not.



% SOLUTION: We have E[ji] = p. Therefore, the bias is 0. This is an unbiased estimator.
The variance of this estimator is Var(j1) = Var(y;) = 1.

Although this estimator is unbiased, this is not a good estimator since its variability does not decrease
with the sample size. For example, variance of the sample mean decreases as 1/n.

(c) [4 points] In the class you have seen the relationship between the MLE estimator and the least
squares problem. Sometimes it is useful to use the following estimate

n
ji = arg min > (i —w)* + M’
=1

for the mean, where the parameter A > 0 is a known number. The estimator [i is biased, but has
lower variance than the sample mean i = n~' ), y; which is an unbiased estimator for u. Give
the bias and variance of the estimator ji.

% SOLUTION: First, we need to find a closed form for fi. Taking the derivative of the objective
with respect to p and setting it equal to zero, we obtain that

n

=2 (i — p) + 2M = 0.

i=1

Solving for p we have that
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The bias decreases to 0 with the sample size.
For variance, we have that

1 n

Var(i) = Var(-—— > i) = ﬁ D> Var(y:) = CESV

Comparing to the variance of the sample mean, which is 1/n, we observe that the variance of [ is
smaller.

2. In class we discussed the fact that machine learning algorithms for function approximation are also a

kind of estimator (of the unknown target function), and that errors in function approximation arise
from three sources: bias, variance, and unavoidable error. In this part of the question you are going
to analyze error when training Bayesian classifiers.
Suppose that Y is boolean, X isreal valued, P(Y = 1) = 1/2 and that the class conditional distributions
P(X|Y) are uniform distributions with p(X|Y = 1) = uniform[1, 4] and p(X|Y = 0) = uniform[—4, —1].
(we use uniform[a,b] to denote a uniform probability distribution between a and b, with zero probability
outside the interval [a,b]).

(a) [1 point]. Plot the two class conditional probability distributions p(X|Y = 0) and p(X|Y =1).



% SOLUTION:
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The black line denotes P[X|Y = 0] and the red line denotes P[X|Y" = 1]. Green and blue lines denote
PIX|Y = 0] and P[X|Y = 1], approximations using the Gaussian distribution in part d.

(b) [4 points]. What is the error of the optimal classifier? Note that the optimal classifier knows
P(Y =1), p(X|Y =0) and p(X|Y = 1) perfectly, and applies Bayes rule to classify new examples.



Recall that the error of a classifier is the probability that it will misclassify a new x drawn at
random from p(X). The error of this optimal Bayes classifier is the unavoidable error for this
learning task.

% SOLUTION: The error of this classifier is equal to 0. We observe that supports of p(X|Y = 0)
and p(X|Y = 1) do not overlap. Therefore, we can perfectly classify a new example, just by looking
whether it is in the interval [—4, —1] or in the interval [1,4].

[6 points] Suppose instead that P(Y = 1) = 1/2 and that the class conditional distributions are
uniform distribution with p(X|Y = 1) = uniform[0, 4] and p(X|Y = 0) = uniform[—3,1]. What is
the unavoidable error in this case? Justify your answer.

% SOLUTION: In this case we will make an error if = € [0,1]. An error of a perfect classifier in
when x € [0,1] is equal to 1/2. Therefore,

Plerror] = Plz € [0,1]] * Plerror|z € [0, 1]]
= (Plz € [0,1]]y = 0] Ply = 0] + P[x € [0,1]|y = 1]P[y = 1]) * Plerror|z € [0, 1]]
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[6 points] Consider again the learning task from part (a) above. Suppose we train a Gaussian
Naive Bayes (GNB) classifier using n training examples for this task, where n — oco. Of course
our classifier will now (incorrectly) model p(X|Y') as a Gaussian distribution, so it will be biased:
it cannot even represent the correct form of p(X1|Y) or P(Y|X).

Draw again the plot you created in part (a), and add to it a sketch of the learned/estimated
class conditional probability distributions the classifier will derive from the infinite training data.
Write down an expression for the error of the GNB. (hint: your expression will involve integrals
- please don’t bother solving them).

% SOLUTION: Given that we have infinite amount of data, we can compute E[X|Y = (0] = —2.5
and Var[X|Y = 0] = 3/4 (using formula for variance of the uniform distribution) and E[X|Y = 1] =
2.5 and Var[X|Y = 1] = 3/4. Since we are approximating p(X|Y") with the Normal distribution, we
have that p(X|V = 0) = N(—2.5,0.75) and p(X|Y = 1) = N(2.5,0.75).

Using this, we have that for x < 0, p(X|Y = 0) > p(X|Y = 1) and for z > 0, we have that
(XY = 0) < p(X|Y = 1). Therefore, the classifier will make no error when classifying new
points. This example illustrates that even with incorrect model assumption, we can perform well when
classifying examples.

[2 points]. So far we have assumed infinite training data, so the only two sources of error are bias
and unavoidable error. Explain in one sentences how your answer to part (d) above would change
if the number of training examples was finite. Will the error increase or decrease? Which of the
three possible sources of error would be present in this situation?

% SOLUTION: Given finite amount of data we will not perfectly learn mean and variance of
p(X|Y). Therefore, the error of the classifier will increace given finite amount of data. We would
have bias and error in this situation.



3 Bayes Nets [William Bishop, 30 points]

1.

(a) [6 points]. Please draw the directed graph corresponding to the following distribution:

(b)

P(A,B,C, D, E, F) = P(A)P(B)P(C)P(D|A)P(E|A)P(F|B, D)P(G|D, E)
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Figure 1: Answer to part (a).

Answer:

[6 points]. Please write down the factored joint distribution represented by the graph below.

Figure 2: Bayes net for question parts (b) and (c).

Answer: P(A)P(B)P(C|A, B)P(D|B)P(E|C, D)P(F|E)

[6 points]. Assume the random variables in the graph shown above are Boolean. How many
parameters are needed in total to fully specify this Bayesian network? Justify your answer.

Answer: In this solution we make use of the fact that probabilities must sum to 1. For example,
if we have a parameter for P(A = true), we don’t need another parameter for P(A = false) since
P(A = false) = 1 — P(A = true). This same principle holds for conditional distributions. Using
this principle, see below for a detailed breakdown, but in total, we nee 14 parameters.



1 for P(A)

1 for P(B)

4 for P(C|A, B) - this is 1 parameter for each combination of values A and B can take on.
(
(
(

2 for P(D|B) - this is 1 parameter for each value B can take on

4 for P(E|C, D) - this is 1 parameter for each combination of values C' and D can take on.
e 2 for P(F|E) - this is 1 parameter for each combination of values E can take on.

(d) [12 points]. Based on the graph shown in part (b), state wether the following are true or false:

Answers indicated in bold font.

i. ALl B - True
ii. A1 B|C - False
iii. ¢ 1L D - False
iv. C 1L D|E - False
v. C 1L D|B,F - False
vi. 1L B - False
vii. F 1 B|C - False
viii. F 1L B|C,D - True
ix. FF 1l B|E - True
x. A1 F - False
xi. A1 F|C - False
xii. AL F|D - False
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