Soft margin SVM

Allow “error” in classification

- &,-_o V]

_ ﬁj - “slack” variables
= (>1if x; misclassifed)

pay linear penalty if mistake

C - tradeoff parameter (C = oo
recovers hard margin SVM)
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Support Vectors

Margin support vectors
§=0, (wx+b)yJ 1, <—

)
(don t contribute to objective
but enforce constraints on

solution)

Correctly classified but on
margin

Non-margin support

vectors

§>0

(contribute to both objective
and constraints)

1>¢ >0 Correctly classified
but inside margin

& > 1 Incorrectly classified



Support Vector Machines
- Dual formulation and Kernel
Trick

Aarti Singh & Geoff Gordon

Machine Learning 10-701
Mar 24, 2021

ACHI




SVM - linearly separable case

n training points (Xq, o) Xp) + S

d features X; is a d-dimensional vector  * y
+ O
+ + 4+
Primal problem: minimize,,, iw.w .. B
(wxj+b)y; > 1, Vj +

w - weights on features (d-dim problem)

Convex quadratic program — quadratic objective, linear
constraints

But expensive to solve if d is very large
Often solved in dual form (n-dim problem)



Dual SVM - linearly separable case

n training points, d features (X4, ..., X,,) where x: is a d-dimensional
vector
* Primal problem: minimizey, g, %w.w

(W-Xj —I—b) y; > 1, V5 < *Z0
illwxseb) Y; -] = O
w - weights on features (d-dim problem)

 Dual problem (derivation):

L(Wb()é)_QWW Z] J[(WXJ—I—b) 1}
;j=>0,Vj

o - weights on training pts (n-dim problem)
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Dual SVM - linearly separable case
moax ()

D) —
e Dual problem (derivation): A7

MaXq minw,b L(W, b, Oz) = %WW — Z] Qj [(W'X] -+ _l?) Y; — 1}

b

@20V Al W - TARY
oW !
oL
S aw =0 T W=D ayX;
] =
L
- %20 :>Zozjyj =0
5 - TEAN



Dual SVM - linearly separable case

] S e ¥ ‘ :"O
* Dual problem: =4 b Y '542‘335
J

MaXq MiNy p L(W, b, o) = %W.W — 2. [(w.xj -+ b) Yj — 1}

ay ZO, Vj

J j
LT 4Ky N - 24 (TLYRTKDE TS
\J ) L — o

: Lidi Yidy A =5 A R)
Z K ——.‘-L?E j Yidy A X
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Dual SVM - linearly separable case

L 1
MaxXimilIZEy ZZ Qa; — 5 Zz,j Q;05YY i X4.X

2.y =0 4

87 Z O
Dual problem is also QP — Z aYiX; <
Solution gives as v

What about b?




Dual SVM: Sparsity of dual solution
RET complementoy stodkanin [(w X Hb)y5 LR =0 & 4O

Tw = ZO‘J?JJ Xj

Q; = 0 oS J
+ a’j 2 (b - (lj =0
I — Only few as can be
4 f >0 = = non-zero : where
L X ’ constraint is active and
S @ - tight
o; 50 =
+ A @ 0= 0 ) (w.x; + E))yj =1
ob = =

Support vectors —
training points j whose

oS are non-zero



Dual SVM - linearly separable case

.. 1
MaXimiZey ZZ Qa; — 5 Zz,j Q;05YY i X4.X

>0y = 0

87 Z O
Dual problem is also QP W= ) yiX;
Solution gives os > i

b=y — W.Xp
Use any one of support vectors with for any k where o, > 0

o, >0 to compute b since constraint is (W- Xt b4 = |
tight (W.Xk + b)yk =1 W-Xeth = Y 10




Dual SVM - non-separable case
L(WdS, +¢§:i’6 - T d; [(w-xjfb)gg—wisl

. ‘,}">= }- 48 \s _2 .s‘.
* Primal problem: S/

MIiNiMIizey p,) %w.w +C 35§

- (wxj+b)y; > 1-¢, V) 0] = o

Lagrange
* Dual problem: Multipliers
max@‘n“d minW,b,{Ej} L(W7 b? 57 ., :u)

st.a; >0 V5 —

pi >0 Vj sl - C LM =0
9‘3 =) ,(J'_‘C
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Dual SVM — non-separable case

L 1
MaxXimizZeq Zz Q; — 5 Zz,] Q0 5YY XK. X

2. &y; = O
Gshizo -
comes from 8_L — 0 Lntuition: :
& It C->eo, recover hard-margin SVM
Dual problem is also QP W = Z O YiXq
: : 1
: >
Solution gives as — Y — WX},
for any k where C > aj > 0




So why solve the dual SVM?

* There are some quadratic programming algorithms
that can solve the dual faster than the primal,
(specially in high dimensions d>>n)

* But, more importantly, the “kernel trick”!!!
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Separable using higher-order features

A o~
¥o [
XZ r ++#+
X1

- - - - H +H#H HET +HEHHEY

T
1 0

X1

SRR |

Sl BT TN { ,ﬁ‘f;' I

r = VXq2+X52
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Dual formulation only depends on
dot-products, not on w!

" 1
MaXxXimliZeqy ZZ Q; — 5 Zz,] Q0 Y;Y XX

—
> ioyy; =0
CZCYZ'ZO

xe = f(x)

4 R
@ K- cﬂx\,) ¢R € D>

maximize, Yoy — 53 ozzoz]yzy]K(Xz, X )
*
[E(xi,xj) = P(x) - P(x;5)]

2.y = 0
CZO%ZO

d(x) — High-dimensional feature space, but never need it explicitly as long

as we can compute the dot product fast using some Kernel K .



[¥

Polynomial features ¢(x) ja

y %Xt 7
" - )‘1»
m — input features d — degree of polynomial ;'\,
‘. )(\?(LJ
d+m—1 (d+m —1)! -
num. terms = = ~ m
d d'(m —1)!
600 / grows fast!

s00 | / . d= 6, m=100
about 1.6 billion terms

400 |
300
200

100
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Dot Product of Polynomial features

d(x) = polynomials of degree exactly d
o] = ln)
X —= 7 —
i) V)

d=1 P(x)-P(z) = [ i; ][ ’2 ] = r121+ 2020 = X7

- ——

x%z% + a:%z% + 21702122

d=2 P(x) - -P(z) = { \/§w21x2 } : [ \/522122 }

Lo ZD

$xd ¢ = (2121 + 7222)°
£ A — (x-2)2
el

d oKx) ok =Kkxz) = (x-2)°
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The Kernel Trick!

o —

. 1 . -
maximizes ;o — 53 5 oy K (%4, %,5)

K (x4,%x5) = ®(x;) - P(x;)
>y =0
C Z 87 >0

* Never represent features explicitly
— Compute dot products in closed form

e Constant-time high-dimensional dot-products for many
classes of features
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Common Kernels

Polynomials of degree d
Ku,v)=(u-v) <«

Polynomials of degree up to d
K(u,v) = (u-v+1)* «

Gaussian/Radial kernels (polynomials of all orders — recall
series expansion of exp)

K(l_laY) — exp <_||11 — V||2> _ ci_(ff,) - P

D02
-

Sigmoid
K(u,v) =tanh(nu-v +v)
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Mercer Kernels

What functions are valid kernels that correspond to feature
vectors ¢(x)?

_ AWALS
Answer: Mercer kernels K KQ" pxi>- B<)

—

* Kis continuous
* Kis symmetric
* Kis positive semi-definite, i.e. x"Kx > 0 for all x

d

Ensures optimization is concave maximization
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Overfitting

* Huge feature space with kernels, what about
overfitting???

— Maximizing margin leads to sparse set of support
vectors

— Some interesting theory says that SVMs search for
simple hypothesis with large margin

— Often robust to overfitting



What about classification time?

 For anew input x, if we need to represent ®(x), we are in trouble!

e Recall classifier: sign(w.®(x)+b)

W ¢ (2

1w = Z oy, P(x;) = T4 y; KEX)
/L ) ¢

—+ b=y — W.P(xg)

for any kK where C > a3, > 0

e Using kernels we are cool!

K(u,v) = d(u) - (v)
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SVMs with Kernels

e Choose a set of features and kernel function

* Solve dual problem to obtain support vectors o

* At classification time, compute:

w-d(x) = oy K(x,x;)

;
b=yr— > oy K(xp,x;)

)
for any k where C > a3 > 0

oo

sign (w - P(x) + b)
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SVMs with Kernels

* |ris dataset, 2 vs 13, Linear Kernel




SVMs with Kernels

* Iris dataset, 1 vs 23, Polynomial Kernel degree 2

Polynomial ~| [Dewe=l | 2 | Separable Bound 1 |
‘ — N

Mo. of Support Vectors: 30 (25 0%)
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SVMs with Kernels

* |ris dataset, 1 vs 23, Gaussian RBF kernel
e - [ ] / Bound

frm—————

MNo. of Suppart Yectors: 55 (455%) €



SVMs with Kernels

* Iris dataset, 1 vs 23, Gaussian RBF kernel

Gaussian REF v Sime [ | Separable sound [ 1|
— .

No. of Suppart Yectors: 41 (3¢ 2% &—
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SVMs with Kernels

* Chessboard dataset, Gaussian RBF kernel

‘Gaussian RBF - SiomE || Separable Bound | 1|

Mo, of Suppart Vectors: 174 (58.0%)
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SVMs with Kernels

* Chessboard dataset, Polynomial kernel

IPolymmlalf - ] Degres 10 [7] Separavle Bount 1 1
—

Mo. of Support Wectors: 147 (49.0%)
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USPS Handwritten digits

73D e 7 F

2
S AZS S 67 ¥ 7
/23N S 6 787

QQO0

L 1000 training and 1000 test instances

Results:
SVM on raw images ~97% accuracy



SVMs vs. Logistic Regression

SVMs Logistic
Regression
Loss function Hinge loss Log-loss




SVMs vs. Logistic Regression

SVM : Hinge loss
loss(f(zj),y;) = (1 —(w-z; +0)y;))+

=

Logistic Regression : Log loss ( -ve log conditional likelihood)

Log loss\\_Hinge loss

0-1 loss

-1 0 1 (W-x; +b)y,
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SVMs vs. Logistic Regression

SVMs Logistic
Regression
Loss function Hinge loss Log-loss
High dimensional Yes! Yes!

features with
kernels




Kernels in Logistic Regression

1

PV =1lzw) = T o

* Define weights in terms of features:
— W= a;P(x;) Vi

(
1

1 4 e~ (i ai®(x) (x)+0b)
1
1 4 e~ (2 K (x,x)+b)

PY=1|zw) =

ANIRITY

* Derive simple gradient descent rule on a.
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SVMs vs. Logistic Regression

SVMs Logistic
Regression

Loss function Hinge loss Log-loss
High dimensional Yes! Yes!
features with
kernels
Solution sparse Often yes! Almost always no!
Semantics of “Margin” Real probabilities
output — B






