
Soft margin SVM

1

min  w.w + C Σξjw,b,{ξj} 

s.t. (w.xj+b) yj ≥ 1-ξj "j
ξj ≥ 0 "j

j

Allow “error” in classification

ξj - “slack” variables 
= (>1 if xj misclassifed)

pay linear penalty if mistake
C  - tradeoff parameter (C = ∞ 
recovers hard margin SVM)
Still QP J



Support Vectors
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w
.x

+ 
b 

= 
1

w
.x

+ 
b 

= 
-1

Margin support vectors
ξj = 0,  (w.xj+b) yj = 1 
(don’t contribute to objective 
but enforce constraints on 
solution)
Correctly classified but on 
margin

Non-margin support 
vectors
ξj > 0
(contribute to both objective 
and constraints)

1 > ξj > 0 Correctly classified 
but inside margin
ξj > 1 Incorrectly classified
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SVM – linearly separable case

• Convex quadratic program – quadratic objective, linear 
constraints

• But expensive to solve if d is very large
• Often solved in dual form (n-dim problem)
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w – weights on features (d-dim problem)

n training points (x1, …, xn) 
d features xj is a d-dimensional vector 

• Primal problem:

w
.x

+ 
b 

= 
0



Dual SVM – linearly separable case

• Primal problem:

• Dual problem (derivation):  
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w – weights on features (d-dim problem)

a – weights on training pts (n-dim problem)

n training points, d features (x1, …, xn) where xi is a d-dimensional 
vector 



Dual SVM – linearly separable case

• Dual problem (derivation):  
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Dual SVM – linearly separable case

• Dual problem:  
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Dual SVM – linearly separable case

Dual problem is also QP
Solution gives ajs
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What about b?



Dual SVM: Sparsity of dual solution
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w
.x

+ 
b 

= 
0

Only few ajs can be 
non-zero : where 
constraint is active and 
tight

(w.xj + b)yj = 1

Support vectors –
training points j whose 
ajs are non-zero

aj > 0

aj > 0

aj > 0

aj = 0

aj = 0

aj = 0



Dual SVM – linearly separable case

Dual problem is also QP
Solution gives ajs
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Use any one of support vectors with 
ak>0 to compute b since constraint is 
tight (w.xk + b)yk = 1



Dual SVM – non-separable case
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• Primal problem:

• Dual problem:  
Lagrange 
Multipliers

,{ξj} 

,{ξj} L(w, b, ⇠,↵, µ)



Dual SVM – non-separable case
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Dual problem is also QP
Solution gives ajs

comes from Intuition:
If C→∞, recover hard-margin SVM

@L

@⇠
= 0



So why solve the dual SVM?
• There are some quadratic programming algorithms 

that can solve the dual faster than the primal, 
(specially in high dimensions d>>n)

• But, more importantly, the “kernel trick”!!!
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Separable using higher-order features
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x1

x2

r = √x12+x22

q

x1

x1

x 1
2



Dual formulation only depends on 
dot-products, not on w!

15

Φ(x) – High-dimensional feature space, but never need it explicitly as long 
as we can compute the dot product fast using some Kernel K



Polynomial features f(x) 
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m – input features d – degree of polynomial

grows fast!
d = 6, m = 100
about 1.6 billion terms



Dot Product of Polynomial features
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d=1

d=2

d



The Kernel Trick!
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• Never represent features explicitly
– Compute dot products in closed form

• Constant-time high-dimensional dot-products for many 
classes of features



Common Kernels
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• Polynomials of degree d

• Polynomials of degree up to d

• Gaussian/Radial kernels (polynomials of all orders – recall 
series expansion of exp)

• Sigmoid



Mercer Kernels
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What functions are valid kernels that correspond to feature 
vectors j(x)?

Answer: Mercer kernels K
• K is continuous 
• K is symmetric
• K is positive semi-definite, i.e.  xTKx ≥ 0 for all x

Ensures optimization is concave maximization



Overfitting
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• Huge feature space with kernels, what about 
overfitting???
– Maximizing margin leads to sparse set of support 

vectors 
– Some interesting theory says that SVMs search for 

simple hypothesis with large margin
– Often robust to overfitting



What about classification time?
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• For a new input x, if we need to represent F(x), we are in trouble!
• Recall classifier: sign(w.F(x)+b)

• Using kernels we are cool!



SVMs with Kernels
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• Choose a set of features and kernel function
• Solve dual problem to obtain support vectors ai

• At classification time, compute:

Classify as



SVMs with Kernels
• Iris dataset, 2 vs 13, Linear Kernel
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SVMs with Kernels
• Iris dataset, 1 vs 23, Polynomial Kernel degree 2
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SVMs with Kernels
• Iris dataset, 1 vs 23, Gaussian RBF kernel
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SVMs with Kernels
• Iris dataset, 1 vs 23, Gaussian RBF kernel
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SVMs with Kernels
• Chessboard dataset, Gaussian RBF kernel
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SVMs with Kernels
• Chessboard dataset, Polynomial kernel

29



USPS Handwritten digits
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SVMs vs. Logistic Regression
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SVMs Logistic
Regression

Loss function Hinge loss Log-loss



SVMs vs. Logistic Regression
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SVM : Hinge loss

0-1 loss

0-1 1

Logistic Regression : Log loss ( -ve log conditional likelihood)

Hinge lossLog loss



SVMs vs. Logistic Regression

33

SVMs Logistic
Regression

Loss function Hinge loss Log-loss

High dimensional 
features with 
kernels

Yes! Yes!

Solution sparse Often yes! Almost always no!

Semantics of 
output

“Margin” Real probabilities



Kernels in Logistic Regression
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• Define weights in terms of features:

• Derive simple gradient descent rule on ai

yi



SVMs vs. Logistic Regression
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SVMs Logistic
Regression

Loss function Hinge loss Log-loss

High dimensional 
features with 
kernels

Yes! Yes!

Solution sparse Often yes! Almost always no!

Semantics of 
output

“Margin” Real probabilities




