
Soft margin SVM

1

min w.w + C Σξjw,b,{ξj}

s.t. (w.xj+b) yj ≥ 1-ξj "j
ξj ≥ 0 "j

j

Allow “error” in classification

ξj - “slack” variables
= (>1 if xj misclassifed)

pay linear penalty if mistake
C - tradeoff parameter (C = ∞
recovers hard margin SVM)
Still QP J

Support Vectors

2

w
.x

+
b

=
1

w
.x

+
b

=
-1

Margin support vectors
ξj = 0, (w.xj+b) yj = 1
(don’t contribute to objective
but enforce constraints on
solution)
Correctly classified but on
margin

Non-margin support
vectors
ξj > 0
(contribute to both objective
and constraints)

1 > ξj > 0 Correctly classified
but inside margin
ξj > 1 Incorrectly classified

Support Vector Machines
- Dual formulation and Kernel

Trick
Aarti Singh & Geoff Gordon

Machine Learning 10-701
Mar 24, 2021

SVM – linearly separable case

• Convex quadratic program – quadratic objective, linear
constraints

• But expensive to solve if d is very large
• Often solved in dual form (n-dim problem)

4

w – weights on features (d-dim problem)

n training points (x1, …, xn)
d features xj is a d-dimensional vector

• Primal problem:

w
.x

+
b

=
0

Dual SVM – linearly separable case

• Primal problem:

• Dual problem (derivation):

5

w – weights on features (d-dim problem)

a – weights on training pts (n-dim problem)

n training points, d features (x1, …, xn) where xi is a d-dimensional
vector

Dual SVM – linearly separable case

• Dual problem (derivation):

6

Dual SVM – linearly separable case

• Dual problem:

7

Dual SVM – linearly separable case

Dual problem is also QP
Solution gives ajs

8

What about b?

Dual SVM: Sparsity of dual solution

9

w
.x

+
b

=
0

Only few ajs can be
non-zero : where
constraint is active and
tight

(w.xj + b)yj = 1

Support vectors –
training points j whose
ajs are non-zero

aj > 0

aj > 0

aj > 0

aj = 0

aj = 0

aj = 0

Dual SVM – linearly separable case

Dual problem is also QP
Solution gives ajs

10

Use any one of support vectors with
ak>0 to compute b since constraint is
tight (w.xk + b)yk = 1

Dual SVM – non-separable case

11

• Primal problem:

• Dual problem:
Lagrange
Multipliers

,{ξj}

,{ξj} L(w, b, ⇠,↵, µ)

Dual SVM – non-separable case

12

Dual problem is also QP
Solution gives ajs

comes from Intuition:
If C→∞, recover hard-margin SVM

@L

@⇠
= 0

So why solve the dual SVM?
• There are some quadratic programming algorithms

that can solve the dual faster than the primal,
(specially in high dimensions d>>n)

• But, more importantly, the “kernel trick”!!!

13

Separable using higher-order features

14

x1

x2

r = √x12+x22

q

x1

x1

x 1
2

Dual formulation only depends on
dot-products, not on w!

15

Φ(x) – High-dimensional feature space, but never need it explicitly as long
as we can compute the dot product fast using some Kernel K

Polynomial features f(x)

16

m – input features d – degree of polynomial

grows fast!
d = 6, m = 100
about 1.6 billion terms

Dot Product of Polynomial features

17

d=1

d=2

d

The Kernel Trick!

18

• Never represent features explicitly
– Compute dot products in closed form

• Constant-time high-dimensional dot-products for many
classes of features

Common Kernels

19

• Polynomials of degree d

• Polynomials of degree up to d

• Gaussian/Radial kernels (polynomials of all orders – recall
series expansion of exp)

• Sigmoid

Mercer Kernels

20

What functions are valid kernels that correspond to feature
vectors j(x)?

Answer: Mercer kernels K
• K is continuous
• K is symmetric
• K is positive semi-definite, i.e. xTKx ≥ 0 for all x

Ensures optimization is concave maximization

Overfitting

21

• Huge feature space with kernels, what about
overfitting???
– Maximizing margin leads to sparse set of support

vectors
– Some interesting theory says that SVMs search for

simple hypothesis with large margin
– Often robust to overfitting

What about classification time?

22

• For a new input x, if we need to represent F(x), we are in trouble!
• Recall classifier: sign(w.F(x)+b)

• Using kernels we are cool!

SVMs with Kernels

23

• Choose a set of features and kernel function
• Solve dual problem to obtain support vectors ai

• At classification time, compute:

Classify as

SVMs with Kernels
• Iris dataset, 2 vs 13, Linear Kernel

24

SVMs with Kernels
• Iris dataset, 1 vs 23, Polynomial Kernel degree 2

25

SVMs with Kernels
• Iris dataset, 1 vs 23, Gaussian RBF kernel

26

SVMs with Kernels
• Iris dataset, 1 vs 23, Gaussian RBF kernel

27

SVMs with Kernels
• Chessboard dataset, Gaussian RBF kernel

28

SVMs with Kernels
• Chessboard dataset, Polynomial kernel

29

USPS Handwritten digits

30

SVMs vs. Logistic Regression

31

SVMs Logistic
Regression

Loss function Hinge loss Log-loss

SVMs vs. Logistic Regression

32

SVM : Hinge loss

0-1 loss

0-1 1

Logistic Regression : Log loss (-ve log conditional likelihood)

Hinge lossLog loss

SVMs vs. Logistic Regression

33

SVMs Logistic
Regression

Loss function Hinge loss Log-loss

High dimensional
features with
kernels

Yes! Yes!

Solution sparse Often yes! Almost always no!

Semantics of
output

“Margin” Real probabilities

Kernels in Logistic Regression

34

• Define weights in terms of features:

• Derive simple gradient descent rule on ai

yi

SVMs vs. Logistic Regression

35

SVMs Logistic
Regression

Loss function Hinge loss Log-loss

High dimensional
features with
kernels

Yes! Yes!

Solution sparse Often yes! Almost always no!

Semantics of
output

“Margin” Real probabilities

