
Deep Convolutional Networks

Aarti Singh

Machine Learning 10-701
Feb 15, 2023

Slides Courtesy: Barnabas Poczos, Ruslan Salakhutdinov, Joshua Bengio,
Geoffrey Hinton, Yann LeCun, Pat Virtue

1

2

Goal of Deep architectures
Goal: Deep learning methods aim at learning feature hierarchies

q Neurobiological motivation: The mammal brain is organized in a deep
architecture (Serre, Kreiman, Kouh, Cadieu, Knoblich, & Poggio, 2007)
(E.g. visual system has 5 to 10 levels)

where features from
higher levels of the
hierarchy are formed
by lower level
features.

3

q Inspired by the architectural depth of the brain, researchers wanted
for decades to train deep multi-layer neural networks.

q No very successful attempts were reported before 2006 …
Researchers reported positive experimental results with typically
two or three levels (i.e. one or two hidden layers), but training
deeper networks consistently yielded poorer results.

q SVM: Vapnik and his co-workers developed the Support Vector
Machine (1993). It is a shallow architecture.

q Digression: In the 1990’s, many researchers abandoned neural
networks with multiple adaptive hidden layers because SVMs worked
better, and there was no successful attempts to train deep networks.

q GPUs + Large datasets -> Breakthrough in 2006

Deep Learning History

4

Breakthrough

Deep Belief Networks (DBN)
Hinton, G. E, Osindero, S., and Teh, Y. W. (2006).
A fast learning algorithm for deep belief nets.
Neural Computation, 18:1527-1554.

Autoencoders
Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. (2007).
Greedy Layer-Wise Training of Deep Networks,
Advances in Neural Information Processing Systems 19

Convolutional neural networks running on GPUs (2012)
Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton, Advances in Neural
Information Processing Systems 2012

5

Deep Convolutional Networks

6

Convolutional Neural Networks

LeNet 5

Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning
Applied to Document Recognition, Proceedings of the IEEE,

86(11):2278-2324, November 1998

Compared to standard feedforward neural networks with similarly-sized layers,
§ CNNs have much fewer connections and parameters
§ and so they are easier to train,
§ while their performance is likely to be only slightly worse, particularly

for images as inputs.

7

Convolution

Continuous functions:

Discrete functions:

If discrete g has support on {-M,…,M} :

8

2-Dimensional Convolution

9

2-Dimensional Convolution

10

2-Dimensional Convolution

https://graphics.stanford.edu/courses/cs178/applets/convolution.html

Filter (=kernel)

Original

11

Convolution

-1 0 1
-1 0 1
-1 0 1

0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0

12

Convolution

-1 0 1
-1 0 1
-1 0 1

13

Poll: Which kernel goes with which output image?

-1 0 1
-2 0 2
-1 0 1

-1 -2 -1
0 0 0
1 2 1

0 0 -1 0
0 -2 0 1
-1 0 2 0
0 1 0 0

K1 K2 K3

Im1 Im2 Im3

Input

14

Poll: Which kernel goes with which output image?

-1 0 1
-2 0 2
-1 0 1

-1 -2 -1
0 0 0
1 2 1

0 0 -1 0
0 -2 0 1
-1 0 2 0
0 1 0 0

K1 K2 K3

Im1 Im2 Im3

Input

15

Convolutional Neural Networks

-1 0 1

-2 0 2

-1 0 1

-1 -2 -1

0 0 0

1 2 1

0 0 -1 0

0 -2 0 1

-1 0 2 0

0 1 0 0

Convolution

[Convolution + Nonlinear activation] + Pooling

LeNet – tanh activation

16

Convolutional Neural Networks

-1 0 1

-2 0 2

-1 0 1

-1 -2 -1

0 0 0

1 2 1

0 0 -1 0

0 -2 0 1

-1 0 2 0

0 1 0 0

Convolution
Pooling

[Convolution + Nonlinear activation] + Pooling

17

Pooling = Down-sampling

.25 .25

.25 .250 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0

Reduce size to reduce number of parameters
Average pooling: convolution with stride = filter size

18

LeNet 5, LeCun et al 1998

§ Input: 32x32 pixel image. Largest character is 20x20
(All important info should be in the center of the receptive fields of the
highest level feature detectors)

§ Cx: Convolutional layer (C1, C3, C5) tanh nonlinear units
§ Sx: Subsample layer (S2, S4) average pooling
§ Fx: Fully connected layer (F6) logistic/sigmoid units
§ Black and White pixel values are normalized:

E.g. White = -0.1, Black =1.175 (Mean of pixels = 0, Std of pixels =1)

19

MINIST Dataset

60,000 original dataset
Test error: 0.95%

540,000 artificial distortions
+ 60,000 original
Test error: 0.8%

20

Misclassified examples
True label -> Predicted label

21

LeNet 5 in Action

C1 C3 S4
Input

22

LeNet 5, Shift invariance

23

LeNet 5, Rotation invariance

24

LeNet 5, Noise resistance

25

LeNet 5, Unusual Patterns

26

Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton,
Advances in Neural Information Processing Systems 2012

Alex Net

ImageNet Classification with Deep
Convolutional Neural Networks

27

The Architecture
Typical nonlinearities:

Here, Rectified Linear Units (ReLU) are used:

Non-saturating/Gradients don’t vanish – faster training

(logistic function)

28

The Architecture
Typical nonlinearities:

Here, Rectified Linear Units (ReLU) are used:

Non-saturating/Gradients don’t vanish – faster training

A four-layer convolutional neural
network with ReLUs (solid line)
reaches a 25% training error rate on
CIFAR-10 six times faster than an
equivalent network with tanh neurons
(dashed line)

(logistic function)

29

The Architecture

5 convolution layers (ReLU)
3 overlapping max pooling – nonlinear downsampling (max value of
regions)

30

The Architecture

5 convolution layers (ReLU)
3 overlapping max pooling – nonlinear downsampling (max value of
regions)
2 fully connected layers
output softmax

31

Training
§ Trained with stochastic gradient descent
§ on two NVIDIA GTX 580 3GB GPUs
§ for about a week

q 650,000 neurons
q 60,000,000 parameters
q 630,000,000 connections
q 5 convolutional layer with Rectified Linear Units (ReLUs), 3

overlapping max pooling, 2 fully connected layer
q Final feature layer: 4096-dimensional

q Prevent overfitting – data augmentation, dropout trick
q Randomly extracted 224x224 patches for more data

32

Preventing overfitting
1) Data augmentation: The easiest and most common method to
reduce overfitting on image data is to artificially enlarge the dataset
using label-preserving transformations:

§ image translation
§ horizontal reflections
§ changing RGB intensities

2) Dropout: set the output of each hidden neuron to zero w.p. 0.5.
§ So every time an input is presented, the neural network samples a

different architecture, but all these architectures share weights.
§ This technique reduces complex co-adaptations of neurons, since a

neuron cannot rely on the presence of particular other neurons.
§ forced to learn more robust features that are useful in conjunction with

many different random subsets of the other neurons.

33

q 15M images
q 22K categories
q Images collected from Web
q Human labelers (Amazon’s Mechanical Turk crowd-sourcing)
q ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2010)

o 1K categories
o 1.2M training images (~1000 per category)
o 50,000 validation images
o 150,000 testing images

q RGB images
q Variable-resolution, but this architecture scales them to 256x256 size

ImageNet

34

Results

35

Results: Image similarity

Test column
six training images that produce feature vectors in
the last hidden layer with the smallest Euclidean distance
from the feature vector for the test image.

36

Results

AlexNet

37

Other optimization tips and tricks

Ø Momentum: use exponentially weighted sum of previous
gradients

can get pass plateaus more quickly, by ‘‘gaining momentum’’

Ø Initialization: cannot initialize to same value, all units in a
hidden layer will behave same; randomly initialize unif[-b,b]

Ø Adaptive learning rates: one learning rate per parameter
e.g. RMSProp uses exponentially weighted average of squared gradients

Adam combines RMSProp with momentum

38

Tips and tricks for preventing overfitting
Ø Dropout
Ø Data augmentation

Ø Early stopping: stop training when validation set error
increases (with some look ahead).

Ø Neural Architecture search: tune number of layers and
neurons per layer using grid search or clever optimization

39

• First hypothesis (underfitting): better optimize

➢ Increase the capacity of the neural network

➢ Check initialization

➢ Check gradients (saturating units and vanishing gradients)

➢ Tune learning rate

• Second hypothesis (overfitting): use better regularization

➢ Dropout

➢ Data augmentation

➢ Early stopping

➢ Architecture search

• For many large-scale practical problems, you will need to use
both: better optimization and better regularization!

Tips and Tricks for training deep NNs

Artificial Neural Networks: Summary

• Used to mimic distributed computation in brain
• Highly non-linear regression/classification
• Vector-valued inputs and outputs
• Potentially millions of parameters to estimate - overfitting
• Hidden layers learn intermediate representations – how many

to use?

• Prediction – Forward propagation
• Gradient descent (Back-propagation), local minima problems

• Coming back in new form as deep networks

