Decision Trees

Aarti Singh

Machine Learning 10-315 Feb 20 , 2023

Parametric methods

- Assume some model (Gaussian, Bernoulli, Multinomial, logistic, network of logistic units, Linear, Quadratic) with fixed number of parameters
	- Gaussian Bayes, Naïve Bayes, Logistic Regression, Support vector machines, Neural Networks
- Estimate parameters (μ , σ^2 , θ ,w, β) using MLE/MAP and plug in
- **Pro** need few data points to learn parameters
- **Con** Strong modeling assumptions, not satisfied in practice

Non-Parametric methods

- Typically don't make any modeling assumptions
- As we have more data, we should be able to learn more complex models
- Let number of parameters scale with number of training data
- Some nonparametric methods

Classification: Decision trees, k-NN (k-Nearest Neighbor) classifier

Density estimation: k-NN, Histogram, Kernel density estimate

Regression: Kernel regression

Decision Trees

- A nonparametric method
	- Complexity increases with more data
	- No fixed set of parameters
- Start with discrete features, then discuss continuous

• What does a decision tree represent?

- Each internal node: test one feature X_i
- Each branch from a node: selects some value for X_i
- Each leaf node: prediction for Y

Prediction

• Given a decision tree, how do we assign label to a test point

So far…

- What does a decision tree represent
- Given a decision tree, how do we assign label to a test point

Discriminative or Generative?

Now …

• How do we learn a decision tree from training data

How to learn a decision tree

• Top-down induction [ID3]

Main loop:

- 1. $X \leftarrow$ the "best" decision feature for next node
- 2. Assign X as decision feature for node
- 3. For each value of X , create new descendant of $node$ (Discrete features)
- 4. Sort training examples to leaf nodes
- 5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes (steps 1-5) after removing current feature
- 6. When all features exhausted, assign majority label to the leaf node

Which feature is best?

Good split if we are more certain about classification after split – Uniform distribution of labels is bad

Which feature is best?

Pick the attribute/feature which yields maximum information gain:

$$
\arg\max_{i} I(Y, X_i) = \arg\max_{i} [H(Y) - H(Y|X_i)]
$$

 $H(Y)$ – entropy of Y $H(Y|X_i)$ – conditional entropy of Y

Andrew Moore's Entropy in a Nutshell

Low Entropy \searrow High Entropy

..the values (locations of soup) sampled entirely from within the soup bowl

throughout our dining room ..the values (locations of soup) unpredictable... almost uniformly sampled

Entropy

• Entropy of a random variable Y

• **Entropy**: $H(Y) = H(P)$ is the expected number of bits needed to encode a randomly drawn value of *Y~P* under most efficient code optimized for distribution *P* 18

Information Gain

- Advantage of attribute = decrease in uncertainty
	- Entropy of Y before split

$$
H(Y) = -\sum_{y} P(Y = y) \log_2 P(Y = y)
$$

- $-$ Entropy of Y after splitting based on X_i
	- Weight by probability of following each branch

$$
H(Y | X_i) = \sum_{x} P(X_i = x) H(Y | X_i = x)
$$

=
$$
-\sum_{x} P(X_i = x) \sum_{y} P(Y = y | X_i = x) \log_2 P(Y = y | X_i = x)
$$

• Information gain is difference

$$
I(Y, X_i) = H(Y) - H(Y | X_i)
$$

Max Information gain = min conditional entropy

Which feature is best to split?

Pick the attribute/feature which yields maximum information gain:

$$
\arg \max_{i} I(Y, X_i) = \arg \max_{i} [H(Y) - H(Y|X_i)]
$$

$$
= \arg \min_{i} H(Y|X_i)
$$

Entropy of Y
$$
H(Y) = -\sum_{y} P(Y = y) \log_2 P(Y = y)
$$

Conditional entropy of

$$
Y \tH(Y \mid X_i) = \sum_x P(X_i = x)H(Y \mid X_i = x)
$$

Feature which yields maximum reduction in entropy (uncertainty) provides maximum information about Y

Information Gain

$$
H(Y | X_i) = -\sum_{x} P(X_i = x) \sum_{y} P(Y = y | X_i = x) \log_2 P(Y = y | X_i = x)
$$

Information Gain

$$
H(Y | X_i) = -\sum_{x} P(X_i = x) \sum_{y} P(Y = y | X_i = x) \log_2 P(Y = y | X_i = x)
$$

How to learn a decision tree

• Top-down induction [ID3, C4.5, C5, ...]

- 4. Sort training examples to leaf nodes
- 5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes
- 6. Prune back tree to reduce overfitting
- 7. Assign majority label to the leaf node

NO YES

 $< 80K$ $> 80K$

Handling continuous features (C4.5)

Convert continuous features into discrete by setting a threshold.

What threshold to pick?

Search for best one as per information gain. Infinitely many??

Don't need to search over more than \sim n (number of training data),e.g. say X_1 takes values $x_1^{(1)}$, $x_1^{(2)}$, ..., $x_1^{(n)}$ in the training set. Then possible thresholds are

$$
[x_1^{(1)} + x_1^{(2)}]/2, [x_1^{(2)} + x_1^{(3)}]/2, \dots, [x_1^{(n-1)} + x_1^{(n)}]/2
$$

Decision Tree more generally…

 $X_1 \geqslant 0.5, X_2 = \{a, b\} \text{or} \{c, d\}$

- Features can be discrete, continuous or categorical
- Each internal node: test some set of features $\{X_i\}$
- Each branch from a node: selects a set of value for $\{X_i\}$
- Each leaf node: prediction for Y

Expressiveness of Decision Trees

- Decision trees in general (without pruning) can express any function of the input features.
- E.g., for Boolean functions, truth table row \rightarrow path to leaf:

- There is a decision tree which perfectly classifies a training set with one path to leaf for each example - overfitting
- But it won't generalize well to new examples prefer to find more compact decision trees

Pruning the tree

- Many strategies for picking simpler trees:
	- Pre-pruning
		- Fixed depth (e.g. ID3)
		- Fixed number of leaves
	- Post-pruning
		- Chi-square test
			- Convert decision tree to a set of rules
			- Eliminate variable values in rules which are independent of label (using chi-square test for independence)
			- Simplify rule set by eliminating unnecessary rules
	- Information Criteria: MDL(Minimum Description Length)

NO

Refund

 $Yes \nearrow$ No

MarSt

Single, Divorced Warried

Information Criteria

• Penalize complex models by introducing cost

$$
\hat{f} = \arg \min_{T} \left\{ \frac{1}{n} \sum_{i=1}^{n} \text{loss}(\hat{f}_T(X_i), Y_i) + \text{pen}(T) \right\}
$$
\n
$$
\log \text{likelihood} \qquad \text{cost}
$$
\n
$$
\text{loss}(\hat{f}_T(X_i), Y_i) = (\hat{f}_T(X_i) - Y_i)^2 \qquad \text{regression} \qquad \text{classification}
$$
\n
$$
= 1_{\hat{f}_T(X_i) \neq Y_i}
$$

penalize trees with more leaves $pen(T) \propto |T|$ CART – optimization can be solved by dynamic programming

Example of 2-feature decision tree classifier

cs.uchicago.edu

How to assign label to each leaf

Classification – Majority vote Regression – ?

How to assign label to each leaf

Regression trees

Average (fit a constant) using training data at the leaves

What you should know

- Decision trees are one of the most popular data mining tools
	- Simplicity of design
	- Interpretability
	- Ease of implementation
	- Good performance in practice (for small dimensions)
- Information gain to select attributes (ID3, C4.5,...)
- Decision trees will overfit!!!
	- Must use tricks to find "simple trees", e.g.,
		- Pre-Pruning: Fixed depth/Fixed number of leaves
		- Post-Pruning: Chi-square test of independence
		- Complexity Penalized/MDL model selection
- Can be used for classification, regression and density estimation too