Graphical Models

Aarti Singh Slides Courtesy: Carlos Guestrin

Machine Learning 10-701/15-781 Apr 17, 2023

Directed – Bayesian Networks

- Compact representation for a joint probability distribution
- Bayes Net = Directed Acyclic Graph (DAG) + Conditional Probability Tables (CPTs)
- distribution factorizes according to graph

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k | \mathrm{pa}_k)$$

- ≡ distribution satisfies local Markov assumption x_k is independent of its non-descendants
 - given its parents pak

Independencies encoded by BN

- Set of distributions that factorize according to the graph F
 ≡ satisfy local Markov assumption
- Set of distributions that respect conditional independencies implied by d-separation properties of graph – I

D-separation

- A, B, C non-intersecting set of nodes
- A is D-separated from B by C ≡ A ⊥ B | C if all paths between nodes in A & B are "blocked" i.e. path contains a node z such that either

and neither z nor any of its descendants is in C.

Representation Theorem

- Set of distributions that factorize according to the graph F
- Set of distributions that respect conditional independencies implied by d-separation properties of graph – I

I 🖒 F

Important because: Given independencies of P can get BN structure G

I 🖓 F

Important because: Read independencies of P from BN structure G

Markov Blanket

• Conditioning on the Markov Blanket, node i is independent of all other nodes.

$$p(\mathbf{x}_i | \mathbf{x}_{\{j \neq i\}}) = \frac{p(x_1, \dots, x_n)}{\sum_i p(x_1, \dots, x_n)} = \frac{\prod_k p(x_k | pa(x_k))}{\sum_i \prod_k p(x_k | pa(x_k))} = p(\mathbf{x}_i | \mathrm{MB}(\mathbf{x}_i))$$

Only terms that remain are the ones which involve i

$$p(x_i|pa(x_i)) \quad p(x_k|pa(x_k) \ni i)$$

 Markov Blanket of node i - Set of parents, children and coparents of node i

Directed – Bayesian Networks

- Graph encodes local independence assumptions (local Markov Assumptions)
- Other independence assumptions can be read off the graph using d-separation
- distribution factorizes according to graph ≡ distribution satisfies all independence assumptions found by d-separation

• Does the graph capture all independencies? Yes, for *almost all* distributions that factorize according to graph. More in 10-708

Topics in Graphical Models

Representation

Which joint probability distributions does a graphical model represent?

• Inference

- How to answer questions about the joint probability distribution?
 - Marginal distribution of a node variable
 - Most likely assignment of node variables
- Learning
 - How to learn the parameters and structure of a graphical model?

Inference

- Possible queries:
- Marginal distribution e.g. P(S)
 Posterior distribution e.g. P(F|H=1)

2) Most likely assignment of nodes arg max P(F=f,A=a,S=s,N=n|H=1) f,a,s,n

Inference

- Possible queries:
- Marginal distribution e.g. P(S)
 Posterior distribution e.g. P(F|H=1)

P(F|H=1)? $P(F|H=1) = \frac{P(F, H=1)}{P(H=1)}$ $= \frac{P(F, H=1)}{\sum_{f} P(F=f, H=1)}$ $\propto P(F, H=1)$

will focus on computing this, posterior will follow with only constant times more effort

Marginalization

Need to marginalize over other vars

 $P(S) = \sum_{f,a,n,h} P(f,a,S,n,h)$

$$P(F,H=1) = \sum P(F,a,s,n,H=1)$$

$$a,s,n$$

$$2^{3} \text{ terms}$$

To marginalize out n binary variables,

need to sum over 2ⁿ terms

Inference seems exponential in number of variables! Actually, inference in graphical models is NP-hard 🙁

Bayesian Networks Example

- 18 binary attributes
 - Inference
 P(BatteryAge|Starts=f)

- need to sum over 2¹⁶ terms!
- Not impressed?
 - HailFinder BN more than 3⁵⁴ = 58149737003040059690 390169 terms

Fast Probabilistic Inference

$$P(F,H=1) = \sum_{a,s,n} P(F,a,s,n,H=1)$$

$$= \sum_{a,s,n} P(F)P(a)P(s|F,a)P(n|s)P(H=1|s)$$

$$= P(F) \sum_{a} P(a) \sum_{s} P(s|F,a)P(H=1|s) \sum_{n} P(n|s)$$

$$Push sums in as far as possible$$

$$Headache$$
Nose

Distributive property: $x_1z + x_2z = z(x_1+x_2)$ 2 multiply 1 multiply

Fast Probabilistic Inference

(Potential for) exponential reduction in computation!

Fast Probabilistic Inference – Variable Elimination

(Potential for) exponential reduction in computation!

Variable Elimination – Order can make a HUGE difference

(Potential for) exponential reduction in computation!

Variable Elimination – Order can make a HUGE difference

$$P(X_{1}) = \sum_{Y,X_{2},...,X_{n}} P(Y)P(X_{1}|Y) \prod_{i=2}^{n} P(X_{i}|Y)$$
$$= \sum_{Y,X_{3},...,X_{n}} P(Y)P(X_{1}|Y) \prod_{i=3}^{n} P(X_{i}|Y) \sum_{X_{2}} P(X_{2}|Y)$$

1 – scope of largest factor

$$= \sum_{X_2,...,X_n} \sum_{Y} P(Y) P(X_1|Y) \prod_{i=2}^n P(X_i|Y)$$

n - scope of
g(X_1,X_2,...,X_n) largest factor

Variable Elimination Algorithm

- Given BN DAG and CPTs (initial factors p(x_i | pa_i) for i=1,..,n)
- Given Query P(X|e) ≡ P(X,e) X set of variables e evidence

IMPORTANT!!!

- Instantiate evidence e e.g. set H=1
- Choose an ordering on the variables e.g., X₍₁₎, ..., X_(n)
- For i = 1 to n, If $X_{(i)} \notin \{X,e\}$ (i.e. need to marginalize it out)
 - Collect factors g_1, \dots, g_k that include $X_{(i)}$
 - Generate a new factor by eliminating $X_{(i)}$ from these factors

$$g = \sum_{X_i} \prod_{j=1}^k g_j$$

- Variable X_(i) has been eliminated!
- Remove $g_1, ..., g_k$ from set of factors but add g
- Normalize P(X,e) to obtain P(X|e)

Complexity for (Poly)tree graphs

Variable elimination order:

• Consider undirected version (ignore edge directions)

- Start from "leaves" up
- find topological order
- eliminate variables in that order

Does not create any factors bigger than original CPTs

For polytrees, inference is linear in # variables (vs. exponential in general)!

Complexity for graphs with loops

• Loop – undirected cycle

Linear in # variables but exponential in size of largest factor generated!

When you eliminate a variable, add edges between its neighbors

Complexity for graphs with loops

Loop – undirected cycle

Linear in # variables but exponential in size of largest factor generated ~ tree-width (max clique size-1) in resulting graph!

Example: Large tree-width with small number of parents

At most 2 parents per node, but tree width is $O(\sqrt{n})$

Compact representation \Rightarrow Easy inference \otimes

Choosing an elimination order

- Choosing best order is NP-complete
 - Reduction from MAX-Clique
- Many good heuristics (some with guarantees)
- Ultimately, can't beat NP-hardness of inference
 - Even optimal order can lead to exponential variable elimination computation
- In practice
 - Variable elimination often very effective
 - Many (many many) approximate inference approaches available when variable elimination too expensive

Inference

• Possible queries:

2) Most likely assignment of nodes arg max P(F=f,A=a,S=s,N=n|H=1) f,a,s,n

Topics in Graphical Models

Representation

Which joint probability distributions does a graphical model represent?

• Inference

- How to answer questions about the joint probability distribution?
 - Marginal distribution of a node variable
 - Most likely assignment of node variables
- Learning
 - How to learn the parameters and structure of a graphical model?

Given set of m independent samples (assignments of random variables),

find the best (most likely?) Bayes Net (graph Structure + CPTs)

Learning the CPTs (given structure)

For each discrete variable X_k

Compute MLE or MAP estimates for $p(x_k | pa_k)$ Recall MLE: $P(X_i = x_i | X_j = x_j) = \frac{Count(X_i = x_i, X_j = x_j)}{Count(X_j = x_j)}$

MAP: Add psuedocounts

MLEs decouple for each CPT in Bayes Nets

• Given structure, log likelihood of data

$$\log P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}) = \log \prod_{j=1}^{m} P(f^{(j)}) P(a^{(j)}) P(s^{(j)}|f^{(j)}, a^{(j)}) P(h^{(j)}|s^{(j)}) P(n^{(j)}|s^{(j)}) = \sum_{j=1}^{m} [\log P(f^{(j)}) + \log P(a^{(j)}) + \log P(s^{(j)}|f^{(j)}, a^{(j)}) + \log P(h^{(j)}|s^{(j)}) + \log P(h^{(j)}|s^{(j)}) = \sum_{j=1}^{m} \log P(f^{(j)}) + \sum_{j=1}^{m} \log P(a^{(j)}) + \sum_{j=1}^{m} \log P(s^{(j)}|f^{(j)}, a^{(j)}) + \sum_{j=1}^{m} \log P(s^{(j)}|f^{(j)}, a^{(j)}) + \sum_{j=1}^{m} \log P(h^{(j)}|s^{(j)}) + \sum_{$$

Can computer MLEs of each parameter independently!

Information theoretic interpretation of MLE

$$\log P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}) = \sum_{j=1}^{m} \sum_{i=1}^{n} \log P\left(X_i = x_i^{(j)} \mid \mathbf{Pa}_{X_i} = \mathbf{x}_{\mathbf{Pa}_{X_i}}^{(j)}\right)$$

$$= \sum_{i=1}^{n} \sum_{x_i} \sum_{\mathbf{x}_{\mathbf{P}\mathbf{a}_{X_i}}} \operatorname{count}(X_i = x_i, \mathbf{P}\mathbf{a}_{X_i} = \mathbf{x}_{\mathbf{P}\mathbf{a}_{X_i}}) \log P\left(X_i = x_i \mid \mathbf{P}\mathbf{a}_{X_i} = \mathbf{x}_{\mathbf{P}\mathbf{a}_{X_i}}\right)$$

Plugging in MLE estimates: ML score

$$\log \hat{P}(\mathcal{D} \mid \hat{\theta}_{\mathcal{G}}, \mathcal{G}) = \sum_{j=1}^{m} \sum_{i=1}^{n} \log \hat{P}\left(x_{i}^{(j)} \mid \mathbf{x}_{\mathsf{Pa}_{X_{i}}}^{(j)}\right)$$
$$= m \sum_{i=1}^{n} \sum_{x_{i}} \sum_{\mathbf{x}_{\mathsf{Pa}_{X_{i}}}} \hat{P}(x_{i}, \mathbf{x}_{\mathsf{Pa}_{X_{i}}}) \log \hat{P}\left(x_{i} \mid \mathbf{x}_{\mathsf{Pa}_{X_{i}}}\right)$$
$$\underset{\text{Reminds of entropy}}{\text{Reminds of entropy}}$$

Information theoretic interpretation of MLE

$$\log \widehat{P}(\mathcal{D} \mid \widehat{\theta}_{\mathcal{G}}, \mathcal{G}) = m \sum_{i=1}^{n} \sum_{x_i} \sum_{\mathbf{x}_{\mathsf{Pa}_{X_i}}} \widehat{P}(x_i, \mathbf{x}_{\mathsf{Pa}_{X_i}}) \log \widehat{P}(x_i \mid \mathbf{x}_{\mathsf{Pa}_{X_i}})$$

$$= -m \sum_{i=1}^{n} \widehat{H}(X_i \mid \mathbf{Pa}_{X_i})$$
$$= m \sum_{i=1}^{n} [\widehat{I}(X_i, \mathbf{Pa}_{X_i}) - \widehat{H}(X_i)]$$
Doesn't depend on graph structure

Doesn't depend on graph structure ${\cal G}$

ML score for graph structure \mathcal{G}

$$\arg\max_{\mathcal{G}}\log\widehat{P}(\mathcal{D} \mid \widehat{\theta}_{\mathcal{G}}, \mathcal{G}) = \arg\max_{\mathcal{G}}\sum_{i=1}^{n}\widehat{I}(X_i, \mathbf{Pa}_{X_i})$$

ML – Decomposable Score

• Log data likelihood

$$\log \widehat{P}(\mathcal{D} \mid \widehat{\theta}_{\mathcal{G}}, \mathcal{G}) = m \sum_{i=1}^{n} \left[\widehat{I}(X_i, \mathbf{Pa}_{X_i}) - \widehat{H}(X_i) \right]$$

- Decomposable score:
 - Decomposes over families in BN (node and its parents)
 - Will lead to significant computational efficiency!!!
 - Score(G: D) = \sum_{i} FamScore($X_i | Pa_{Xi} : D$)

How many trees are there?

- Trees every node has at most one parent
- nⁿ⁻² possible trees (Cayley's Theorem)

Nonetheless - Efficient optimal algorithm finds best tree!

Scoring a tree

 \mathbf{n}

$$\arg \max_{\mathcal{G}} \log \widehat{P}(\mathcal{D} \mid \widehat{\theta}_{\mathcal{G}}, \mathcal{G}) = \arg \max_{\mathcal{G}} \sum_{i=1}^{n} \widehat{I}(X_i, \mathbf{Pa}_{X_i})$$

Equivalent Trees (same score): I(A,B) + I(B,C)

$$(A) \rightarrow (B) \rightarrow (C) \qquad (A) \rightarrow (B) \rightarrow (C) \qquad (A) \rightarrow (B) \rightarrow (C)$$

Score provides indication of structure:

$$(A) \rightarrow (B) \rightarrow (C)$$
$$I(A,B) + I(B,C)$$

Chow-Liu algorithm

- For each pair of variables X_i,X_j
 - Compute empirical distribution: $\hat{P}(x_i, x_j) = \frac{\text{Count}(x_i, x_j)}{m}$
 - Compute mutual information:

$$\widehat{I}(X_i, X_j) = \sum_{x_i, x_j} \widehat{P}(x_i, x_j) \log \frac{\widehat{P}(x_i, x_j)}{\widehat{P}(x_i)\widehat{P}(x_j)}$$

- Define a graph
 - Nodes X₁,...,X_n
 - Edge (i,j) gets weight $\widehat{I}(X_i, X_j)$
- Optimal tree BN
 - Compute maximum weight spanning tree (e.g. Prim's, Kruskal's algorithm O(nlog n))
 - Directions in BN: pick any node as root, breadth-first-search defines directions

Chow-Liu algorithm example

G

G

Scoring general graphical models

- Graph that maximizes ML score -> complete graph!
- Information never hurts
 H(A|B) ≥ H(A|B,C)
- Adding a parent always increases ML score
 I(A,B,C) ≥ I(A,B)
- The more edges, the fewer independence assumptions, the higher the likelihood of the data, but will overfit...
- Why does ML for trees work?
 Restricted model space tree graph

Regularizing

- Model selection
 - Use MDL (Minimum description length) score
 - BIC score (Bayesian Information criterion)
- Still NP hard

Theorem: The problem of learning a BN structure with at most *d* parents is NP-hard for any (fixed) *d>1* (Note: tree d=1)

- Mostly heuristic (exploit score decomposition)
- Chow-Liu: provides best tree approximation to any distribution.
- Start with Chow-Liu tree. Add, delete, invert edges. Evaluate BIC score

What you should know

- Learning BNs
 - Maximum likelihood or MAP learns parameters
 - ML score
 - Decomposable score
 - Information theoretic interpretation (Mutual information)
 - Best tree (Chow-Liu)
 - Other BNs, usually local search with BIC score