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Directed — Bayesian Networks

Compact representation for a joint probability distribution

Bayes Net = Directed Acyclic Graph (DAG) + Conditional
Probability Tables (CPTs)

distribution factorizes according to graph
K
pIx) = Hl"(.-’»'l\-|l’“k)
k=1

= distribution satisfies local Markov assumption

e

X, is independent of its non-descendants
given its parents pa,

L7



Independencies encoded by BN

Set of distributions that factorize according to the graph — F
= satisfy local Markov assumption

Set of distributions that respect conditional independencies
implied by d-separation properties of graph — I



D-separation

* A, B, C—non-intersecting set of nodes

e AisD-separated fromBbyC=A 1L B|C
if all paths between nodes in A & B are “blocked”
i.e. path contains a node z such that either

0!

and neither z nor any of its descendants is in C.

andzin C, OR




Representation Theorem

« Set of distributions that factorize according to the graph - F

* Set of distributions that respect conditional independencies
implied by d-separation properties of graph — I

I ©= F

Important because: Given independencies of P can get BN structure G

I & F

Important because: Read independencies of P from BN structure G



Markov Blanket

* Conditioning on the Markov Blanket, node i is independent of
all other nodes.

il oy p@,.mn) Tl p(eklpalze) |
PO i) = e — T e plarlpatay — POMBE)

Only terms that remain are the
ones which involve i

p(xilpa(z;))  p(zrlpa(zr) 3 i)

* Markov Blanket of node i - Set of parents, children and co-
parents of node i



Directed — Bayesian Networks

Graph encodes local independence assumptions (local Markov
Assumptions)

Other independence assumptions can be read off the graph
using d-separation

distribution factorizes according to graph = distribution
satisfies all independence assumptions found by d-separation

F & 1T

Does the graph capture all independencies? Yes, for almost all
distributions that factorize according to graph. More in 10-708



Topics in Graphical Models

* Representation

— Which joint probability distributions does a graphical
model represent?

 |nference

— How to answer questions about the joint probability
distribution?
* Marginal distribution of a node variable
* Most likely assignment of node variables

* Learning

— How to learn the parameters and structure of a graphical
model?



Inference

* Possible queries:
1) Marginal distribution e.g. P(S)
Posterior distribution e.g. P(F|H=1)

2) Most likely assignment of nodes H
arg max P(F=f,A=a,S=s,N=n|H=1)

fa,s,n

e



Inference

* Possible queries:

1) Marginal distribution e.g. P(S) @

Posterior distribution e.g. P(F|H=1)

P(FIH=1) ? @

_ P(F, H=1)
- 3 P(F=fH=1)
f

oc P(F, H=1) will focus on computing this, posterior will
follow with only constant times more effort



Marginalization

Need to marginalize over other vars

P(S) =5 P(f,a,S,n,h)

fa,n,h
P(F,H=1) =5 P(Fa,s,n,H=1) @

a,s,n
\_'_l

23 terms

Inference seems exponential in number of variables!
Actually, inference in graphical models is NP-hard ®

®

To marginalize out n binary variables,
need to sum over 2" terms



Bayesian Networks Example

Alternator FanQe It Le@ BQwAge

. 4

Charge S * Inference
GQnmk — P(BatteryAge|Starts=f)

Lights BatteryPower
F

Ra’: GasGauge
Starter Lea%

5

18 binary attributes

need to sum over 21° terms!

EngineCranks

Not impressed?

y — HailFinder BN — more
th?’ump @rts than 354 —
DQMO, ‘ 58149737003040059690
390169 terms

SparkPlugs



Fast Probabilistic Inference

P(F,H=1) =5 P(F,a,s,n,H=1) @
=5 P(F)P(a)P(s|F,a)P(n]|s)P(H=1]s) /
= P(F) % P(a) g P(s|F,a)P(H=1]s) % P(n|s)

Push sums in as far as possible He

Distributive property: X;z + X,z = z(X;+X,)
2 multiply 1 mulitply



Fast Probabilistic Inference

P(F,H=1) =5 P(F,a,s,n,H=1) @
=5 P(F)P(a)P(s|F,a)P(n]|s)P(H=1]s) /
,S,Nn .
= P(F) % P(a) g P(s|F,a)P(H=1]s) E/P(n/lvs)
= P(F) > P(a) > P(s|Fa)P(H=1]s)
= P(F) > P(a) g,(F,a)
° 2" vs. n 2kmultiplies
- P(F) g,(F) \ k - scope of (number of

variables in) largest factor

(Potential for) exponential reduction in computation



Fast Probabilistic Inference —
Variable Elimination

P(FH=1) = ZP(F)P(a)P(lea)P(nls)P(H 1]s) @
b 5 Pla) 3 PisIFa)P(H=1]s) yﬂ S)

P(H=1|F,a)
)
1

P(H=1|F)

(Potential for) exponential reduction in computation



Variable Elimination — Order can
make a HUGE difference

P(F,H=1) =a§rI]3(F)P(a)P(s|F,a)P(nIs)P(H=1|s) @
(e 3 P(a) 3 PlsIFalP(H=1]5) 3 PIA] 2)@ /.
| | P(H=1'|F,a)' |
(H"1|F)

- aape (o9
P(F,H=1) = P(F) Z P(a) ZZ P(s|Fa)P(n|s)P(H= 1|s)

|
g(Fa,n) 3 - scope of largest factor

(Potential for) exponential reduction in computation



Variable Elimination — Order can
make a HUGE difference

n

P(X,) = >  PY)PXY)]]PXiY)
Y. Xo,.... X, =2
= Y rmrxa [P P(Xs|Y)
Y.Xs.... X i=3 Ko - 1 - scope of
g(Y) largest factor
= Y Y ry)rea) ] PEily)
Xo,oXn ¥ i=2 J n - scope of

é(Xl,Xz,..,Xn) largest factor



Variable Elimination Algorithm

Given BN — DAG and CPTs (initial factors — p(x;| pa;) for i=1,..,n)

Given Query P(X|e) = P(X,e) X — set of variables e - evidence

Instantiate evidence e e.g. set H=1 IMPORTANTIII |

Choose an ordering on the variables e.g., Xy, ..., X,
Fori=1ton,If X; ¢{X,e} (i.e. need to marginalize it out)
— Collect factors gy,...,g, that include X,

— Generate a new factor by eliminating X;; from these factors

Z H 9j
X; =1
— Variable X, has been eliminated!

— Remove g,,...,8, from set of factors but add g
Normalize P(X,e) to obtain P(X]e)



Complexity for (Poly)tree graphs

L
. 9 9 ‘o
Altrnator  FanBelt _Lea BatteryAge Variable elimination order:

¥ ISQ e Consider undirected version
'© charae BatferyState (ignore edge directions)

l
C " { Q§ e Start from “leaves” up
uQ: BafferyRower GatinTank * find topological order
K ] e, * eliminate variables in that
order
(D Staorter ) b LQ‘?H
EngineCranks Does not create any factors
. bigger than original CPTs
% FQPump Qﬁs
O For polytrees, inference is
ot linear in # variables (vs.

X SparkPlugs exponenTial |n gener'al)!



Complexity for graphs with loops

* Loop —undirected cycle

Linear in # variables but exponential in size of largest factor
generated!

Smoking Moralize

P graph
Tarculosls Cgr Bgchltls I:"> Tuberculosis

(connect parents

into a clique
xg Dvs‘pn . & drop direction § 1 Nhea
of all edges)

When you eliminate a variable, add edges between its neighbors



Complexity for graphs with loops

* Loop —undirected cycle

Var eliminated Factor generated

S

e

TN
ancer
’/Vb rca
XRay Dyspnea

ronchitis

O -4 0 U g

gl(CIB)

Linear in # variables but exponential in size of largest factor
generated ~ tree-width (max clique size-1) in resulting graph!



Example: Large tree-width with small
number of parents

At most 2 parents per node, but tree width is O(Vn)

Compact representation =/ Easy inference ®



Choosing an elimination order

Choosing best order is NP-complete

— Reduction from MAX-Clique

Many good heuristics (some with guarantees)
Ultimately, can’t beat NP-hardness of inference

— Even optimal order can lead to exponential variable
elimination computation

In practice
— Variable elimination often very effective

— Many (many many) approximate inference approaches
available when variable elimination too expensive



Inference

* Possible queries:

2) Most likely assignment of nodes @

arg max P(F=f,A=a,S=s,N=n|H=1)
fa,s,n
Use Distributive property: He
max(x4,z, X,z) = z max(xy,x,)

2 multiply 1 mulitply



Topics in Graphical Models

* Representation

— Which joint probability distributions does a graphical
model represent?

 |nference

— How to answer questions about the joint probability
distribution?
* Marginal distribution of a node variable
* Most likely assignment of node variables

* Learning

— How to learn the parameters and structure of a graphical
model?



Learning

“
CPTs —
() |
. - % P(X;| Pay;)
xm
\/ structure parameters
_/

Given set of m independent samples (assignments of random
variables),

find the best (most likely?) Bayes Net (graph Structure + CPTs)



Learning the CPTs (given structure)

\ For each discrete variable X,
x(1) Compute MLE or MAP estimates for
x(m) . . . '
plr|pa.)
Recall

COUﬂt(XZ' = CBZ',Xj = CBJ)

MLE: P(X;=uz;| X;=1z;) = Count(X; = z;)
j=

MAP: Add psuedocounts




MLEs decouple for each CPT in Bayes
Nets

* Given structure, log likelihood of data Q /@D

log P(D | 0g,G) /CS>\

(j)

= log H P PP 0™ P s p(nll s ® ©

J=
= ) [log P(}%—I—Iog P(a}—l—log ].D(SM‘(J ajj—l—log P(hr(J -|-|O P(?(% (Jﬁ]
j:
— i log P(f%—i log P(a(jﬁ-l—i log P(g1f(,%)+
|: , J ijzl , J lj=1 T J
Depends eF eA eslp’A i log P(i('lj,)|gﬁ—|— i log P(’Igljj gs]
only on =1 = '
Y Y
eH|s 9N|s

Can computer MLEs of each parameter independently!



Information theoretic interpretation
of MLE

log P(D | 6g,G) = Z Z IogP( =2 | Pay, = x,(ﬁa)X>

j=1:=

n
=YY Y count(X; =z, Pay = XPaXZ.) log P (Xz' =z; | Pay, = XPaXi)
i=1 Ti XPay.

Plugging in MILE estimates: ML score

log P(D | 6g,G) = Z Z IogP( 2 XEJ;)X.)
J=1:= ‘

=m % Y S‘ P(CBZ,Xan ) |OgP($Z | Xan)

i=1 Ti XPay

Reminds of entropy



Information theoretic interpretation
of MLE

n
09 P(D [ 8g,G) =m 3. > > P(xi,xpay,) 109 P (z; | xpay,)

i=1 T; XPay
1

1=1

=m Z (X;,Pay,) — H(X;)]
Doesn’t depend on graph structureg

ML score for graph structure §

arg mggxlog P(D | Hg, g) = arg maXZI XwPaX )
1=1



ML — Decomposable Score

* Log data likelihood

log P(D | 0g,G) = Z (X, Pax,) ﬁ(Xz)]

 Decomposable score:
— Decomposes over families in BN (node and its parents)
— Will lead to significant computational efficiency!!!
— Score(G : D) = 2., FamScore(X;|Pay, : D)



How many trees are there?

* Trees —every node has at most one parent
* n"2 possible trees (Cayley’s Theorem)

cd €3 €3 €3

Nonetheless - Efficient optimal algorithm finds best tree!

— A AN



Scoring a tree

arg maxlog P(D | §g, G) = arg maXZ IA(Xz-, Pay.)
g g —

Equivalent Trees (same score): 1(A,B) + I(B,C)

- W@ W@

Score provides indication of structure: °

00,0 (0) (&

I(A,B) + 1(B,C) I(A,B) + I(A,C)



Chow-Liu algorithm

* For each pair of variables XX

~ COUﬂt(CIZZ‘,CCj>
— Compute empirical distribution: P(z;, x;) =

m
— Compute mutual information:
-~ _ P(xz;,x;)
I(X;, X;) = P(z;,x;) 109 — '
v x;J v P(x;)P(x;)

e Define a graph
— Nodes Xj,..., X,
— Edge (i,j) gets weight I(X;, X;)

* Optimal tree BN

— Compute maximum weight spanning tree (e.g. Prim’s, Kruskal’s
algorithm O(nlog n))

— Directions in BN: pick any node as root, breadth-first-search defines
directions



Chow-Liu algorithm example

A




Scoring general graphical models

Graph that maximizes ML score -> complete graph!
Information never hurts
H(A|B) > H(A|B,C)

Adding a parent always increases ML score
1(A,B,C) > I(A,B)

The more edges, the fewer independence assumptions, the
higher the likelihood of the data, but will overfit...

Why does ML for trees work?

Restricted model space — tree graph



Regularizing

Model selection
— Use MDL (Minimum description length) score
— BIC score (Bayesian Information criterion)

Still NP —hard

Theorem: The problem of learning a BN structure with at
most d parents is NP-hard for any (fixed) d>1 (Note: tree d=1)

Mostly heuristic (exploit score decomposition)

Chow-Liu: provides best tree approximation to any
distribution.

Start with Chow-Liu tree. Add, delete, invert edges. Evaluate
BIC score



What you should know

* Learning BNs
— Maximum likelihood or MAP learns parameters

— ML score
 Decomposable score

* Information theoretic interpretation (Mutual
information)

— Best tree (Chow-Liu)
— Other BNs, usually local search with BIC score





