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Directed – Bayesian Networks

• Compact representation for a joint probability distribution

• Bayes Net = Directed Acyclic Graph (DAG) + Conditional 
Probability Tables (CPTs)

• distribution factorizes according to graph

≡ distribution satisfies local Markov assumption
xk is independent of its non-descendants
given its parents pak



Independencies encoded by BN

• Set of distributions that factorize according to the graph – F
≡ satisfy local Markov assumption

• Set of distributions that respect conditional independencies 
implied by d-separation properties of graph – I



D-separation
• A, B, C – non-intersecting set of nodes
• A is D-separated from B by C ≡ A ^ B|C

if all paths between nodes in A & B are “blocked”
i.e. path contains a node z such that either

and z in C, OR

and neither z nor any of its descendants is in C.

z z

z



Representation Theorem

• Set of distributions that factorize according to the graph - F

• Set of distributions that respect conditional independencies 
implied by d-separation properties of graph – I

I F

I F

Important because: Given independencies of P can get BN structure G

Important because: Read independencies of P from BN structure G



Markov Blanket

• Conditioning on the Markov Blanket, node i is independent of 
all other nodes.

Only terms that remain are the 
ones which involve i

• Markov Blanket of node i - Set of parents, children and co-
parents of node i

= p(xxxi|MB(xxxi))



Directed – Bayesian Networks
• Graph encodes local independence assumptions (local Markov 

Assumptions) 
• Other independence assumptions can be read off the graph 

using d-separation
• distribution factorizes according to graph ≡ distribution 

satisfies all independence assumptions found by d-separation

• Does the graph capture all independencies? Yes, for almost all
distributions that factorize according to graph. More in 10-708

F I



Topics in Graphical Models
• Representation
– Which joint probability distributions does a graphical 

model represent?

• Inference
– How to answer questions about the joint probability 

distribution?
• Marginal distribution of a node variable
• Most likely assignment of node variables

• Learning
– How to learn the parameters and structure of a graphical 

model?



Inference

• Possible queries:
1) Marginal distribution e.g. P(S)

Posterior distribution e.g. P(F|H=1)

2) Most likely assignment of nodes
arg max P(F=f,A=a,S=s,N=n|H=1)

Flu Allergy

Sinus

Headache Nose

f,a,s,n



Inference

• Possible queries:
1) Marginal distribution e.g. P(S)

Posterior distribution e.g. P(F|H=1)
Flu Allergy

Sinus

Headache Nose

P(F|H=1) ?

P(F|H=1) =

= 

µ P(F, H=1) will focus on computing this, posterior will 
follow with only constant times more effort

P(F, H=1)
P(H=1)

P(F, H=1)
∑ P(F=f,H=1)
f



Marginalization

Need to marginalize over other vars

P(S) = ∑ P(f,a,S,n,h)

P(F,H=1) = ∑ P(F,a,s,n,H=1)

To marginalize out n binary variables,
need to sum over 2n terms

Flu Allergy

Sinus

Headache Nose

a,s,n

f,a,n,h

23 terms

Inference seems exponential in number of variables!
Actually, inference in graphical models is NP-hard L



Bayesian Networks Example

• 18 binary attributes

• Inference 
– P(BatteryAge|Starts=f)

• need to sum over 216 terms!
• Not impressed?
– HailFinder BN – more 

than 354 = 
58149737003040059690
390169 terms



Fast Probabilistic Inference

Flu Allergy

Sinus

Headache Nose

P(F,H=1) = ∑ P(F,a,s,n,H=1)

= ∑ P(F)P(a)P(s|F,a)P(n|s)P(H=1|s)

= P(F) ∑ P(a) ∑ P(s|F,a)P(H=1|s) ∑ P(n|s)

Push sums in as far as possible 

Distributive property:    x1z + x2z = z(x1+x2) 

a,s,n

na s

a,s,n

2 multiply      1 mulitply



Fast Probabilistic Inference

Flu Allergy

Sinus

Headache Nose

(Potential for) exponential reduction in computation!

P(F,H=1) = ∑ P(F,a,s,n,H=1)

= ∑ P(F)P(a)P(s|F,a)P(n|s)P(H=1|s)

= P(F) ∑ P(a) ∑ P(s|F,a)P(H=1|s) ∑ P(n|s)

= P(F) ∑ P(a) ∑ P(s|F,a)P(H=1|s)

= P(F) ∑ P(a) g1(F,a)

= P(F) g2(F)

a,s,n

na s

a,s,n
1

a s

a 2n vs. n 2k multiplies
k – scope of (number of 

variables in) largest factor



Fast Probabilistic Inference –
Variable Elimination

Flu Allergy

Sinus

Headache Nose

(Potential for) exponential reduction in computation!

P(F,H=1) = ∑ P(F)P(a)P(s|F,a)P(n|s)P(H=1|s)

= P(F) ∑ P(a) ∑ P(s|F,a)P(H=1|s) ∑ P(n|s)

P(H=1|F,a)

P(H=1|F)

a,s,n

na s

1



Variable Elimination – Order can 
make a HUGE difference

Flu Allergy

Sinus

Headache Nose

(Potential for) exponential reduction in computation!

P(F,H=1) = ∑ P(F)P(a)P(s|F,a)P(n|s)P(H=1|s)

= P(F) ∑ P(a) ∑ P(s|F,a)P(H=1|s) ∑ P(n|s)

P(H=1|F,a)

P(H=1|F)

P(F,H=1) = P(F) ∑ P(a) ∑ ∑ P(s|F,a)P(n|s)P(H=1|s)

g(F,a,n)

a,s,n

na s

1

sa n

3 – scope of largest factor



Variable Elimination – Order can 
make a HUGE difference

X1 X2 X3 X4

Y

g(Y)
1 – scope of 
largest factor

g(X1,X2,..,Xn)
n – scope of 
largest factor



Variable Elimination Algorithm
• Given BN – DAG and CPTs (initial factors – p(xi|pai) for i=1,..,n)
• Given Query P(X|e) ≡ P(X,e)         X – set of variables e - evidence
• Instantiate evidence e   e.g. set H=1

• Choose an ordering on the variables e.g., X(1), …, X(n)

• For i = 1 to n, If X(i) Ï{X,e} (i.e. need to marginalize it out)
– Collect factors g1,…,gk that include X(i)

– Generate a new factor by eliminating X(i) from these factors

– Variable X(i) has been eliminated!
– Remove g1,…,gk from set of factors but add g

• Normalize P(X,e) to obtain P(X|e)

IMPORTANT!!!



Complexity for (Poly)tree graphs

Variable elimination order:
• Consider undirected version 
(ignore edge directions)
• Start from “leaves” up 
• find topological order 
• eliminate variables in that
order

Does not create any factors 
bigger than original CPTs

For polytrees, inference is 
linear in # variables (vs. 
exponential in general)!



Complexity for graphs with loops

• Loop – undirected cycle

Linear in # variables but exponential in size of largest factor 
generated!

Moralize 
graph

(connect parents 
into a clique

& drop direction 
of all edges)

When you eliminate a variable, add edges between its neighbors



Complexity for graphs with loops

• Loop – undirected cycle
Var eliminated

S
B
D
C
T
O

Linear in # variables but exponential in size of largest factor 
generated ~ tree-width (max clique size-1) in resulting graph!

Factor generated
g1(C,B)
g2(C,O,D)
g3(C,O)
g4(T,O)
g5(O)
g6(X)



Example: Large tree-width with small 
number of parents

At most 2 parents per node, but tree width is O(√n) 

Compact representation Þ Easy inference L



Choosing an elimination order
• Choosing best order is NP-complete
– Reduction from MAX-Clique

• Many good heuristics (some with guarantees)
• Ultimately, can’t beat NP-hardness of inference
– Even optimal order can lead to exponential variable 

elimination computation
• In practice
– Variable elimination often very effective
– Many (many many) approximate inference approaches 

available when  variable elimination too expensive



Inference

• Possible queries:
2) Most likely assignment of nodes

arg max P(F=f,A=a,S=s,N=n|H=1)

Use Distributive property:    
max(x1z, x2z) = z max(x1,x2) 

Flu Allergy

Sinus

Headache Nose

f,a,s,n

2 multiply      1 mulitply



Topics in Graphical Models
• Representation
– Which joint probability distributions does a graphical 

model represent?

• Inference
– How to answer questions about the joint probability 

distribution?
• Marginal distribution of a node variable
• Most likely assignment of node variables

• Learning
– How to learn the parameters and structure of a graphical 

model?



Learning

Given set of m independent samples (assignments of random 
variables), 

find the best (most likely?) Bayes Net (graph Structure + CPTs)

x(1)
…

x(m)

Data

structure parameters

CPTs –
P(Xi| PaXi)



Learning the CPTs (given structure)
For each discrete variable Xk

Compute MLE or MAP estimates forx(1)
…

x(m)

Data



MLEs decouple for each CPT in Bayes
Nets

• Given structure, log likelihood of data F A

S

H N(j) (j) (j) (j) (j) (j) (j) (j) (j)

(j) (j) (j) (j) (j) (j) (j) (j) (j)

(j) (j) (j) (j) (j)

(j) (j) (j) (j)Depends 
only on 

qF qA qS|F,A

qH|S qN|S
Can computer MLEs of each parameter independently!



Information theoretic interpretation 
of MLE

Plugging in MLE estimates: ML score

Reminds of entropy



Information theoretic interpretation 
of MLE

ML score for graph structure

Doesn’t depend on graph structure 



ML – Decomposable Score

• Log data likelihood

• Decomposable score:
– Decomposes over families in BN (node and its parents)
– Will lead to significant computational efficiency!!!
– Score(G : D) = åi FamScore(Xi|PaXi : D)



How many trees are there?

• Trees – every node has at most one parent
• nn-2 possible trees (Cayley’s Theorem)

Nonetheless – Efficient optimal algorithm finds best tree!



Scoring a tree

A B C

Equivalent Trees (same score):   I(A,B) + I(B,C)

A B C A B C

Score provides indication of structure:

A B C

A

B C

I(A,B) + I(B,C) I(A,B) + I(A,C)



Chow-Liu algorithm

• For each pair of variables Xi,Xj
– Compute empirical distribution:
– Compute mutual information:

• Define a graph
– Nodes X1,…,Xn

– Edge (i,j) gets weight

• Optimal tree BN
– Compute maximum weight spanning tree (e.g. Prim’s, Kruskal’s

algorithm O(nlog n))
– Directions in BN: pick any node as root, breadth-first-search defines 

directions



Chow-Liu algorithm example

1/

1/

1/

1/

1/

1/

1/

1/

1/

1/

1/



Scoring general graphical models

• Graph that maximizes ML score -> complete graph!
• Information never hurts

H(A|B) ≥ H(A|B,C)

• Adding a parent always increases ML score
I(A,B,C) ≥ I(A,B)

• The more edges, the fewer independence assumptions, the 
higher the likelihood of the data, but will overfit…

• Why does ML for trees work? 
Restricted model space – tree graph



Regularizing

• Model selection 
– Use MDL (Minimum description length) score
– BIC score (Bayesian Information criterion)

• Still NP –hard
Theorem: The problem of learning a BN structure with at 
most d parents is NP-hard for any (fixed) d>1 (Note: tree d=1)

• Mostly heuristic (exploit score decomposition)
• Chow-Liu: provides best tree approximation to any 

distribution. 
• Start with Chow-Liu tree. Add, delete, invert edges. Evaluate 

BIC score



What you should know

• Learning BNs
– Maximum likelihood or MAP learns parameters
– ML score 
• Decomposable score
• Information theoretic interpretation (Mutual 

information)

– Best tree (Chow-Liu)
– Other BNs, usually local search with BIC score




