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i.i.d to sequential data

* Independent, identically { X}, w p(X)

distributed data

* Sequential data

— Time-series data
E.g. Speech

Amplitude

Tm (e)

— Characters in a sentence . . . . E
— Base pairs along a DNA strand
3 g ! ! IJ ! !




Markov Models

e Joint Distribution

p(X) — p(X17X27'°°7Xn)
= p(X1)p(X2|X1)p(X3| X2, X1) .. (X3 X1, ..., X1)
— _p(Xz"Xz'—la - e 7X1) Chain rule
=1

* Markov Assumption (mt" order)

p(X) = Hp(XZ-‘XZ._l, o ,Xz._m) Current observation
i1 only depends on past
m observations



Markov Models

 Markov Assumption

n

15t order p(X) = HP(X1|X7;—1)

2nd order




Markov Models

# parameters in
stationary model

* Markov Assumption d-ary variables

n

1storder  p(X) = ][p(Xi|Xi-1) O(d?)

=1

n

mthorder  p(X) = J[p(XilXio1,..., Xiom) O(dm)

1=1

n-1thorder p(X) = |[p(XilXi-1,...,X1)  O(d
i=1
= no assumptions — complete graph

Homogeneous/stationary Markov model (probabilities of transitioning from
a particular state value to another value doesn't depend on i)



Hidden Markov Models

* Distributions that characterize sequential data with few
parameters but are not limited by strong Markov assumptions.

Observation space O; €{Y1, Yo s Yi!
Hidden states S;€{l, ..., S}



Hidden Markov Models

p(Sl,...,ST,Ol,...,OT)

15t order Markov assumption on hidden states {S;} t=1, ..., T
(can be extended to higher order).

Note: O, depends on all previous observations {O,_4,...0}



Hidden Markov Models

* Parameters — stationary/homogeneous markov model
(independent of time t)

S S

Initial probabilities .
S - | - T[i

p(S; =1) 0, 0,

Transition probabilities

p(S: =15 = 1) =y (ST {0 =
T

Emission probabilities p(S1) | [ p(SelSe-1) ] [ p(O:]Se)
t=2 t=1

P(O:=Yy|S=1i) = qiy



HMM Example

e The Dishonest Casino

A casino has two die:

Fair dice
P(1) = P(2) =P(3) =P(5) =P(6) =1/6

Loaded dice
P(1) = P(2) = P(3) = P(5) = 1/10
P(6) =%

Casino player switches back-&-
forth between fair and loaded die
once every 20 turns




HMM Problems

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

e How likely is this sequence, given our model of how the casino

works?
e Thisis the EVALUATION problem in HMMs

e What portion of the sequence was generated with the fair die, and

what portion with the loaded die?
e Thisis the DECODING question in HMMs

e How “loaded’” is the loaded die? How “fair” is the fair die? How often

does the casino player change from fair to loaded, and back?
e Thisis the LEARNING guestion in HMMs



HMM Example

e Observed sequence: {O,}i_,

O—O—O—O—O—®—

Y: "
3 0":
=

e Hidden sequence {St}thl or segmentation):

O—O—O—O—D—O—




State Space Representation

* Switch between F and L once every 20 turns (1/20 = 0.05)

0.05
0.95 0.95
0.05
HMM Parameters
Initial probs P(S;=L)=0.5=P(S;=F)
Transition probs P(S;=L/F|S., =L/F)=0.95
P(S, = F/L|S,, = L/F) = 0.05
Emission probabilities P(O,=y|S=F)=1/6 v=1,2,3,4,5,6

P(O,=y|S=L)=1/10 vy=1,2,3,4,5
=1/2 y=6



Three main problems in HMMs

 Evaluation — Given HMM parameters & observation seqn{O,}._,

find p({O;}7_,) prob of observed sequence

* Decoding — Given HMM parameters & observation seqn {O;}._,

.....

sequence of hidden states

* Learning — Given HMM with unknown parameters and {04
observation sequence

find arg mgxp({Ot}f:1|9) parameters that maximize

likelihood of observed data



HMM Algorithms

e Evaluation — What is the probability of the observed
sequence? Forward Algorithm

* Decoding — What is the probability that the third roll was
loaded given the observed sequence? Forward-Backward
Algorithm

— What is the most likely die sequence given the observed
sequence? Viterbi Algorithm

* Learning — Under what parameterization is the observed
sequence most probable? Baum-Welch Algorithm (EM)



Evaluation Problem

Given HMM parameters p(S1), p(St|Si—1), p(O¢|S:) & observation
sequence {O:};—;

find probability of observed sequence
i io i EO
p({Ot}le) = Z pP({Os}i—1, {St}i=1) ? !
T
= Z p(Sl H St|St 1 Hp Ot|St
t=2 t=1

requires summing over all possible hidden state values at all
times — ST exponential # terms!

Instead:  p({O:}i—,) = ZP({Ot}lev St = k)

I

ok Compute recursively




Forward Probability

p({O:}/=1) = ZP({Ot}tT:h St =k) = ZCVI%
k k

Compute forward probability of recursively over t

S
K 1
af = p(O1,...,04 5 = k) Q_.
0O O.
Introduce S, ; 1 CB -

Chain rule

Markov assumption

= p(O|Sy = k) Zai_lp(St = k|S;—1 = 1)



Forward Algorithm

Can compute o,% for all k, t using dynamic programming:
 Initialize:  a;*=p(0,|S; =k) p(S; =k) for all k

 |terate:fort=2,..T

= p(0;]S; = k) 2 a1 p(S = k|Sey =i)  forallk
|

* Termination: p({O ) =5 ok

k



Decoding Problem 1

 Given HMM parameters p(S51), p(St|Si—-1), p(O¢|S:) & observation
sequence {O:};—;

find probability that hidden state at time t was k p(S; = k|{O;}{_,)

p(St — k? {Ot}le) — p(017 . '7Ot7 St — kaOt-l—la . '7OT)
= p(Ol, .o .,Ot,St — k)p(Ot—l—l, .o .,OT‘St — k‘)

Compute recursively ok B




Backward Probability

p(St — k? {Ot};r:1> — p(017 . '7Otast — k)p(Ot-l—la . '7OT|St — k) — Ozfﬁf

Compute forward probability BX recursively over t

B¢ = p(Os1,...,071|S = k) St Sw1 Sw S

Introduce S,,4

Chain rule

Markov assumption

= Zp(SH_l = Z"St = k)p(0t+1|st—|—1 — Z.)/61%4—1

)



Backward Algorithm

Can compute B¢ for all k, t using dynamic programming:
 Initialize: B*=1 for all k

e |terate:fort=T-1, ..., 1
Bf = Y p(Sey1 =19 = k)p(Ops1|Se41 = 1)By, forall k

* Termination: p(S, =k, {O;},) = alpF

p(Si =k AOLy) _ ofBf
p({O1L)) 2 P

p(St = k|{0t}?=1) —



Most likely state vs. Most likely
sequence

* Most likely state assignment at time t

arg max p(Sy = k|{Oy};—) = argmax oy B

E.g. Which die was most likely used by the casino in the third roll given the
observed sequence?

* Most likely assignment of state sequence
arg max p({St}t 1|{Ot}t 1)

{Se}L
E.g. What was the most I|ker sequence of die rolls used by the casino
given the observed sequence? x y Pl y)

o| O 0.35

. MLA of x? o 1 005
Not the same solution | MLA of (xy)> 7z © o=
Z| Z

o3




Decoding Problem 2

* Given HMM parameters p(S;), p(S:|S:—1), p(O:|S;) & observation
sequence {0},

find most likely assignment of state sequence

arg max p({St}i=1{Os}i=1) = arg max p({St}i=1, {Oe}i=1)

= argmax max p(Sr =k, {8} {0 )
\ - )

1
v

Compute recursively

VK _ probability of most likely sequence of states ending at
state S; =k



Viterbi Decoding

{gn;x;c p({Si}i=1: {0 }iz1) = max Vy

Compute probability V't‘ recursively overt

‘/tk: = S magc p(St:k,Sl,...,St_l,Ol,...,Ot)
S

Chain rule a
Markov assumption O,

= p(O¢|St = k) m?Xp(St = k|S;_1 =) VL



Viterbi Algorithm

Can compute V¥ for all k, t using dynamic programming:
* Initialize:  V;*=p(0,|S;=k)p(S; = k) for all k

 |terate:fort=2,..T

Vtk = p(O|S; = k) maxp(St = k|S;_1 =)V, for all k

* Termination: {m?x p({S:},, {0 1)_r]a]?;U/T

Traceback: St = arg max V.

S; 4 —argmaxp(S 1St —1 —z)Vt 1



Computational complexity

* What is the running time for Forward, Forward-Backward,
Viterbi?

kK O 7

a; = Q" E :&t—l Di.k
i

ko Ot+1 i

57: — E Pk.i 4; 5t+1
i

k @, '

Vil = " maxpig Vi,

O(S?T) linear in T instead of O(ST) exponential in T!



Learning Problem

* Given HMM with unknown parameters 0 = {{n;}, {p:;}, {¢F}}
and observation sequence O = {O,} L,

find parameters that maximize likelihood of observed data

arg max p({O:}2_,|6) But likelihood doesn't factorize
0 since observations not i.i.d.

hidden variables — state sequence {S;}]_,

EM (Baum-Welch) Algorithm:
E-step — Fix parameters, find expected state assignments
M-step — Fix expected state assignments, update parameters



Baum-Welch (EM) Algorithm

e Start with random initialization of parameters

* E-step — Fix parameters, find expected state assignments

() = p(S, = i]0,0) = P
vi(t) = p(S¢ = 1|0, 0) L

Forward-Backward algorithm
§ij(t) = p(Si—1= 1,5 = j|O, 0)

_ p(St_l = Z|O, 9)p(St = j, Ot, e ooy OT|St_1 = 7:, (9)
p(Ota SRR OT|St—1 = 1, (9)

vt —1) piy 4 B
Bi-1




Baum-Welch (EM) Algorithm

e Start with random initialization of parameters

* E-ste N
P Z 7i(t) = expected # times
vi(t) = p(S; = 1|0, 9) t=1 in state i

T-1
Y 7(t) = expected # transitions
=t from state i

&ij(t) = p(Si—1= ¢, 5¢= 3|0, 0)

T—1
Z ¢ (t) = expected # transitions
t=1 from state i to ]

* M-step
Z Y gk = S 100, =kYi(t)
1 T .
Dij = E"tr'z—ll 'sij (t) > -1 7i(t)

St vi(t)



HMMs.. What you should know

Useful for modeling sequential data with few parameters
using discrete hidden states that satisfy Markov assumption

Representation - initial prob, transition prob, emission prob,

State space representation

Algorithms for inference and learning in HMMs

— Computing marginal likelihood of the observed sequence:
forward algorithm

— Predicting a single hidden state: forward-backward
— Predicting an entire sequence of hidden states: viterbi

— Learning HMM parameters: an EM algorithm known as Baum-
Welch





