Machine Learning - Intro

Aarti Singh

Machine Learning 10-701 Jan 18, 2023

Teaching team

Instructors:

Aarti

TAs: Nari Johnson

Dhruv Malik

Yusha Liu

Education Associate:

Joshmin

Admin:

Mary

Logistics

Lectures: Mon, Wed 9:30-10:50 am POS 153

Recitations: Fri 9:30-10:50 am POS 153

Office hours: Mon, Tue, Wed, Thurs (check website)

Lectures will be recorded. <u>Strictly for your use only.</u> Office hours will NOT be recorded.

Videos: <u>Canvas</u>

Logistics

Webpage: https://www.cs.cmu.edu/~aarti/Class/10701_Spring23

Syllabus, policies, schedule of lectures, recitations,

office hours, slides, reading material, homeworks, ...

Piazza: http://piazza.com/cmu/spring2023/10701

announcements, questions for Teaching team,

discussion forum for students

Homework submission: Gradescope

Grades: Canvas

Expectations

- In-person attendance, videos for review (or emergencies) only,
 zoom available for medical or other exceptional cases only
 - Please stay home if sick
- Interact!
 - Ask questions in class by raising hand
 - Respond to questions in class by raising hand
 - In-class polls
- In-person Office hours (starting next week)

Recitations

- Strongly recommended
 - Brush up pre-requisites
 - Hands-on exercises
 - Review material (difficult topics, clear misunderstandings, extra new topics, HW and exam solutions)
 - Ask questions
- 1st Probability Review FRIDAY
 - by Yusha
 - Fri Jan 20 9:30-10:50 am POS 153

Grading

Grading

- 5 homework assignments $(4 \times 12\% + 8\% = 58\%)$
- 1 depth exercise (12%)
- 1 midterm, 1 final: (13+16 = 29%) midterm - Mar 1 during class
- Participation (3%)

Late days

- total 5 across homeworks, no more than 2 per HW
- 50% credit for 24 hrs after late days
- late days are for unforeseen situations (interviews, conference, etc.), do NOT include them in your plan

Homeworks & QnAs

- Collaboration
 - You may discuss the questions
 - Each student writes their own answers, without copying from discussion notes or ongoing conversations
 - Each student must write their own code for the programming part
 - Don't search for answers on the web, Google, previous years' homeworks, etc.
 - please ask us if you are not sure if you can use a particular reference
 - list resources used (references, discussants) on top of submitted homework
- Homeworks are hard, start early ©
- Due on gradescope

Waitlist + Audits + Pass/Fail

Waitlist

we'll let everyone in

keep attending lectures, recitations and office hours and doing HW

Audits and Pass/Fail

Audits allowed (with some requirement)

Pass/Fail allowed

About the course

- Machine Learning Algorithms, Theory, Principles and Applications
 - Classification: Naïve Bayes, Logistic Regression, Neural Networks,
 Support Vector Machines, k-NN, Decision Trees, ...
 - Regression: Linear regression, Kernel regression, Nonparametric regression, ...
 - Unsupervised methods: Kernel density estimation, mixture models, clustering, PCA, ...
 - Graphical models, Hidden Markov Models, Reinforcement learning
 - Core concepts: Probability, Optimization, Theory, Model selection, overfitting, bias-variance tradeoffs, Fairness ...
- See tentative lecture schedule on webpage MAY CHANGE
- Material: Class slides/videos + Reading material

Recommended textbooks

- Textbooks (Recommended, not required):
 - Pattern Recognition and Machine Learning, Christopher Bishop (available online)
 - Machine Learning: A probabilistic perspective, Kevin Murphy (available online)
 - Machine Learning, Tom Mitchell
 - The elements of statistical learning: Data mining, inference and prediction, Trevor Hastie, Robert Tibshirani, Jerome Friedman

Pre-requisites

Assume mathematical maturity

- Basic Probability and Statistics
 - Probability distributions discrete and continuous, Mean, Variance, Conditional probabilities, Bayes rule, Central limit theorem...
- Programming (python) and principles of computing
- Multivariate Calculus
 - Derivatives, integrals of multi-variate functions
- Linear Algebra
 - Matrix inversions, eigendecomposition, ...

Tutorial videos

- Probability, Calculus, Functional Analysis, SVD
 https://www.youtube.com/channel/UC7gOYDYEgXG1yIH_rc2LgOw/playlists
- Linear Algebrahttp://www.cs.cmu.edu/~zkolter/course/linalg/index.html
- Self-assessment test on webpage

Related courses

Related courses – Intro to ML algorithms and principles

10-301 – Undergrad version for non-SCS majors

10-601 – Masters version

10-701 – PhD version

10-715 – PhD students doing research in machine learning (hardest, most mathematical)

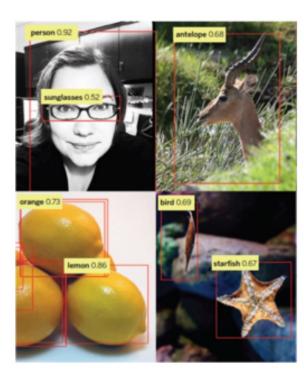
Other related courses:

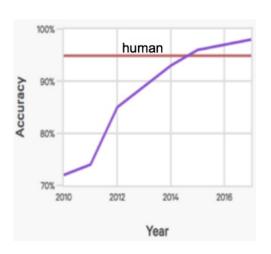
10-606, 10-607 – Math background for ML

10-605, 10-805 – Machine Learning with Large Datasets

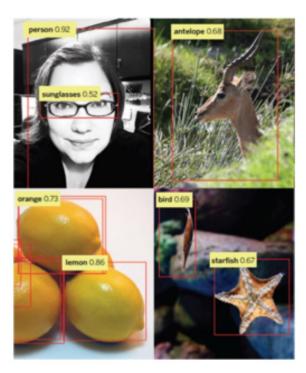
11-663 – Machine Learning in Practice (ML software)

10-702, 10-704, 10-707, 10-708, 10-709, 15-859(A/B) — related advanced topics



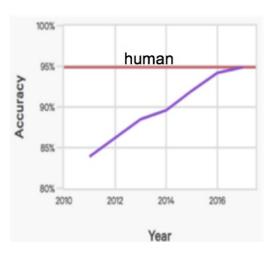


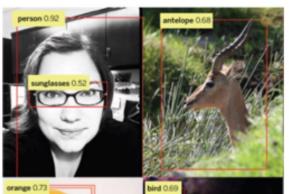
Computer vision



Computer vision

Speech Recognition





Speech Recognition

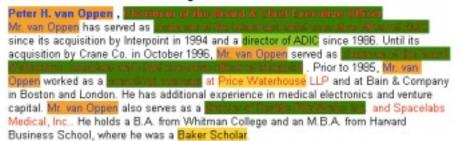


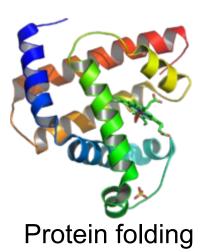
Games & Reasoning

Computer vision

Robotic control

Text analysis





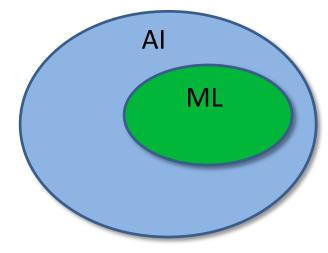
➤ How have you interacted with ML in your daily life so far?

ML is ubiquitous

- Wide applicability
- Software too complex to write by hand
- Improved machine learning algorithms
- Improved data capture, networking, faster computers
- Demand for self-customization to user, environment

AI: develop intelligent agents

ML: learn to generalize using data



Fun begins ...

What is Machine Learning?

Data

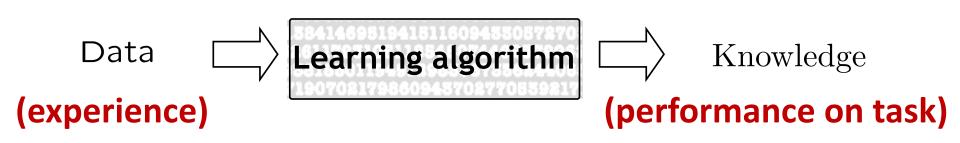
Learning algorithm

Knowledge

What is Machine Learning?

Design and Analysis of algorithms that

- improve their <u>performance</u>
- at some <u>task</u>
- with <u>experience</u>



Human learning

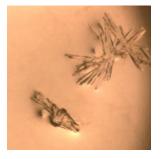
Task: Learning stage of protein crystallization

Crystal

Needle

Tree

Predict the label of



Tree

Needle

Performance

Tasks, Experience, Performance

Tasks, Experience, Performance

Machine Learning Tasks

Broad categories -

Supervised learning

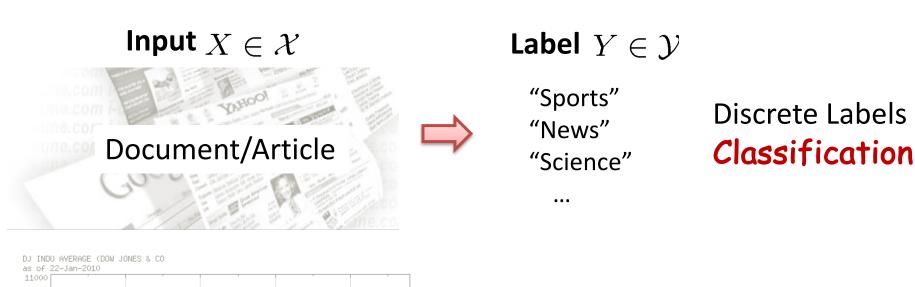
Classification, Regression

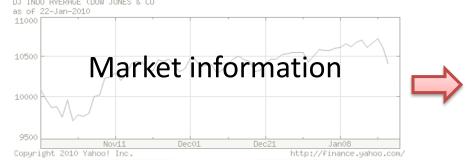
Unsupervised learning

Density estimation, Clustering, Dimensionality reduction

- Graphical models, Hidden Markov models
- Reinforcement learning
- Semi-supervised learning
- Active learning
- Many more ...

Supervised Learning





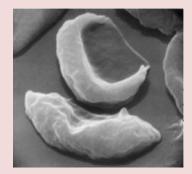
Share Price "\$ 24.50"

Continuous Labels
Regression

Task: Given $X \in \mathcal{X}$, predict $Y \in \mathcal{Y}$.

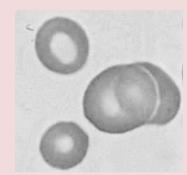
 \equiv Construct **prediction rule** $f: \mathcal{X} \rightarrow \mathcal{Y}$

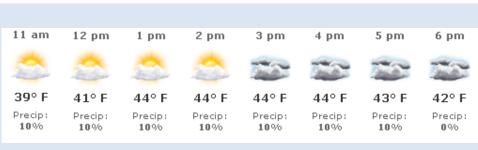
Classification or Regression?



Medical Diagnosis

"Anemic"
"Healthy"





Weather prediction

Unsupervised Learning

Aka "learning without a teacher"

Input
$$X \in \mathcal{X}$$

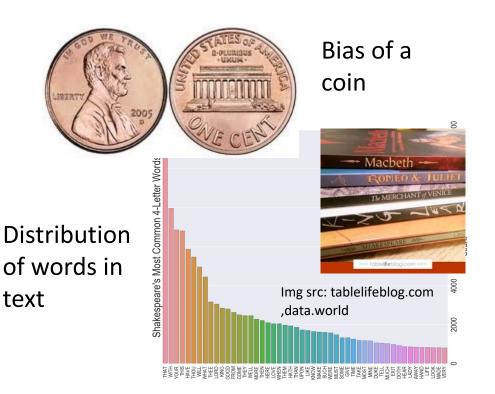
Document/Article

Word distribution (Probability of a word)

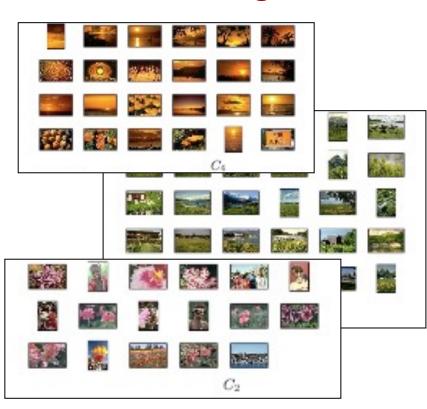
Task: Given $X \in \mathcal{X}$, learn f(X).

Unsupervised Learning

Learning a Distribution



Clustering



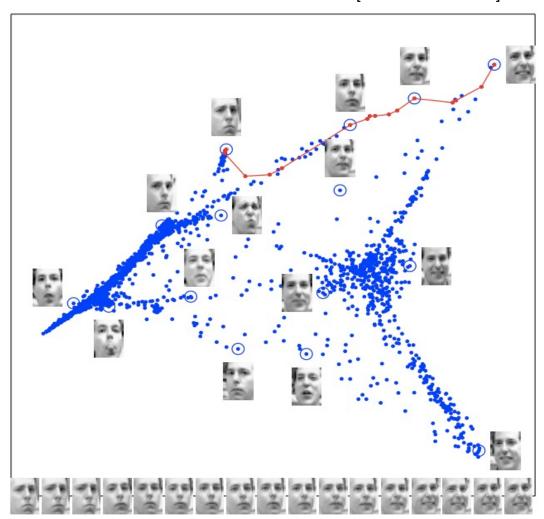
Unsupervised Learning

Dimensionality Reduction/Embedding

[Saul & Roweis '03]

Images have thousands or millions of pixels.

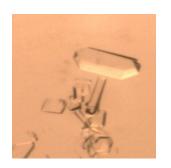
Can we give each image a small set of coordinates, such that similar images are near each other?



Tasks, Experience, Performance

Experience = Training Data

Task: Learning stage of protein crystallization



Crystal

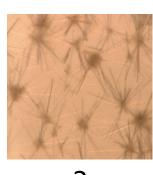
Tree

Needle

Empty

Tree

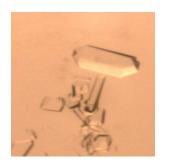
Needle



Performance

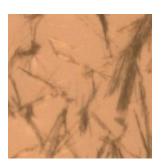
Training Data ≠ **Test Data**

Task: Learning stage of protein crystallization



Crystal

Tree

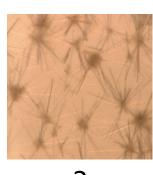


Needle

Empty

Tree

Needle



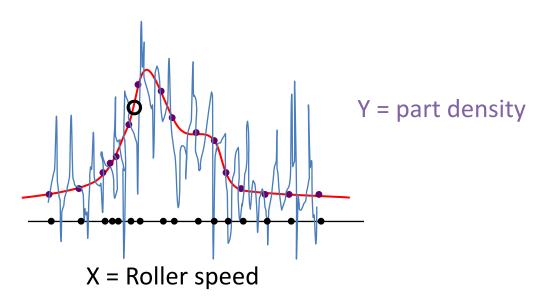
Performance

Generalization & Overfitting

A good ML algorithm

should: generalize aka perform well on test data

should not: overfit the training data



Critical to report testing and NOT training accuracy

Regression example: Blood samples were collected for 100 subjects who were administered a covid-19 vaccine.

An ML algorithm was trained to predict the number of antibodies in the blood of these 100 subjects given their profiles.

The normalized mean square error of the trained model was 0.001 for predicting the antibodies in these 100 subjects.

➤ Is this a good model?

10 more subjects were then recruited and the normalized mean square error of the model's predictions of antibodies for these 10 subjects was 0.35.

Tasks, Experience, Performance

Performance:

loss(Y, f(X)) - Measure of closeness between label Y and prediction f(X) for test data X

X

Diagnosis, Y

f(X)

loss(Y, f(X))

"Anemic cell"

"Anemic cell"

0

"Healthy cell"

1

 $loss(Y, f(X)) = 1_{\{f(X) \neq Y\}}$

0/1 loss

Performance:

loss(Y, f(X)) - Measure of closeness between label Y and prediction f(X) for test data X

X	Share price, Y	f(X)	loss(Y, f(X))
Past performance, trade volume etc. as of Sept 8, 2010	"\$24.50"	"\$24.50"	0
		"\$26.00"	1?
		"\$26.10"	2?

$$loss(Y, f(X)) = (f(X) - Y)^2$$
 squared loss

For test data X, measure of closeness between label Y and prediction f(X)

Binary Classification
$$Ioss(Y, f(X)) = 1_{\{f(X) \neq Y\}}$$
 0/1 loss

Regression
$$loss(Y, f(X)) = (f(X) - Y)^2$$
 squared loss

Lets think of unsupervised tasks next.

For test data X, measure how good is the learnt distribution, clustering or embedding f(X)

Learning a distribution

What performance measure would you use?

Glossary of Machine Learning

- Task
- Supervised learning
 - Classification
 - Regression
- Unsupervised learning
 - Learning distribution
 - Clustering
 - Dimensionality reduction/Embedding
- Input, X
- Label, Y
- Prediction, f(X)

- Experience = Training data
- Test data
- Overfitting
- Generalization
- Performance
- Likelihood
- Loss 0/1, squared, negative log
 likelihood