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The Kernel Trick!
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* Never represent features explicitly
— Compute dot products in closed form

e Constant-time high-dimensional dot-products for many
classes of features



Dot Product of Polynomial features

d(x) = polynomials of degree exactly d
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Common Kernels

Polynomials of degree d

Ku,v) = (u-v)?
Polynomials of degree up to d
Ku,v) = (u-v+41)¢

Gaussian/Radial kernels (polynomials of all orders — recall
series expansion of exp)

K(u,v) = exp (_”“—""2)
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Sigmoid
K(u,v) =tanh(nu-v +v)



Mercer Kernels

What functions are valid kernels that correspond to feature
vectors ¢(x)?

Answer: Mercer kernels K

* Kis continuous

* Kis symmetric

* Kis positive semi-definite, i.e. z'Kz > 0 for all z

d

Ensures optimization is concave maximization



Overfitting

* Huge feature space with kernels, what about
overfitting???

— Maximizing margin leads to sparse set of support
vectors

— Some interesting theory says that SVMs search for
simple hypothesis with large margin

— Often robust to overfitting



What about classification time?

 For anew input x, if we need to represent ®(x), we are in trouble!

e Recall classifier: sign(w.®(x)+b)

W =) oy D(x;)
i

b=y — W.P(xy)

for any kK where C > a5 > 0

e Using kernels we are cool!

K(u,v) =®d(u) - d(v)



SVMs with Kernels

e Choose a set of features and kernel function

* Solve dual problem to obtain support vectors o

* At classification time, compute:

w-P(x) = Z oy K (%, %)

b=yr— » oy K(xg,x;)

(
for any k where C > a;. > 0

m sign (w - P(x) + b)



SVMs with Kernels

* |ris dataset, 2 vs 13, Linear Kernel




SVMs with Kernels

Iris dataset, 1 vs 23, Polynomial Kernel degree 2
Folynomial ~| [Dewel | 2 | | Separable Bound | 1 |

No. of Support vectors: 30 (25 0%)
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SVMs with Kernels

* |ris dataset, 1 vs 23, Gaussian RBF kernel
Gaussanfer e osena [0 [seperatie

Mo. of Suppart Wectors: 55 (45 53%)



SVMs with Kernels

* Iris dataset, 1 vs 23, Gaussian RBF kernel

Gaussian RBF | Sioma [ | Separable Bowndll [ 1 |

No. of Suppart Yectors: 41 (34 2%)
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SVMs with Kernels

* Chessboard dataset, Gaussian RBF kernel

No. of Suppart Vectors: 174 (58.0%)

<] pisens | separavi S| [ 1
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SVMs with Kernels

* Chessboard dataset, Polynomial kernel

Folynomial w| Dease | 10 | ] Separasle peund [ 1

No. of Support Vactors: 147 (49.0%)
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USPS Handwritten digits
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L 1000 training and 1000 test instances

Results:
SVM on raw images ~97% accuracy



SVMs vs. Logistic Regression

SVMs Logistic
Regression
Loss function Hinge loss Log-loss




SVMs vs. Logistic Regression

SVM : Hinge loss
loss(f(zj),y;) = (1 —(w-z; +0)y;))+

Logistic Regression : Log loss ( -ve log conditional likelihood)

Log loss\\_Hinge loss

0-1 loss

-1 0 1 (W-x; +b)y,
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SVMs vs. Logistic Regression

SVMs Logistic
Regression
Loss function Hinge loss Log-loss
High dimensional Yes! Yes!

features with
kernels




Kernels in Logistic Regression

1
1+ e~ (w®()+D)

PlY=1|x,w) =

Regularized log likelihood:
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minZlog(l T LR S T §||W||2
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Equivalent constrained optimization problem:
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Kernels in Logistic Regression

Lagrangian:

Derivatives:
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Kernels in Logistic Regression

1

P =1lzw) = T o

* Define weights in terms of features:
N Z OziCD(Xi) Yi
i

1

1 4+ e~ (25 i ®(x;)-® (x)+b)
1

1 + e~ (s K (x,x;)+b)

PY=1|zw) =

* Derive simple gradient descent rule on a.

21



SVMs vs. Logistic Regression

SVMs Logistic
Regression

Loss function Hinge loss Log-loss
High dimensional Yes! Yes!
features with
kernels
Solution sparse Often yes! Almost always no!
Semantics of “Margin” Real probabilities
output




Kernel Trick

Only dot products between data points appear in optimization
Replace with kernel
Valid kernels aka Mercer kernels

Can apply to other methods such as linear regression, PCA
(principal component analysis), ... etc.
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