Kernel Trick

Aarti Singh

Machine Learning 10-701 Feb 8, 2023

The Kernel Trick!

maximize_{$$\alpha$$} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$

$$K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j})$$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$C \geq \alpha_{i} \geq 0$$

- Never represent features explicitly
 - Compute dot products in closed form
- Constant-time high-dimensional dot-products for many classes of features

Dot Product of Polynomial features

 $\Phi(x)$ = polynomials of degree exactly d

$$\mathbf{x} = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] \quad \mathbf{z} = \left[\begin{array}{c} z_1 \\ z_2 \end{array} \right]$$

d=1
$$\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} \cdot \begin{vmatrix} z_1 \\ z_2 \end{vmatrix} = x_1 z_1 + x_2 z_2 = \mathbf{x} \cdot \mathbf{z}$$

$$d=2 \ \Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \begin{bmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix} \cdot \begin{bmatrix} z_1^2 \\ \sqrt{2}z_1z_2 \\ z_2^2 \end{bmatrix} = x_1^2z_1^2 + x_2^2z_2^2 + 2x_1x_2z_1z_2$$
$$= (x_1z_1 + x_2z_2)^2$$
$$= (\mathbf{x} \cdot \mathbf{z})^2$$

d
$$\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = K(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z})^d$$

Common Kernels

Polynomials of degree d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$$

Polynomials of degree up to d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$$

 Gaussian/Radial kernels (polynomials of all orders – recall series expansion of exp)

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||^2}{2\sigma^2}\right)$$

Sigmoid

$$K(\mathbf{u}, \mathbf{v}) = \tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)$$

Mercer Kernels

What functions are valid kernels that correspond to feature vectors $\varphi(\mathbf{x})$?

Answer: **Mercer kernels** K

- K is continuous
- K is symmetric
- K is positive semi-definite, i.e. $z^TKz \ge 0$ for all z

Ensures optimization is concave maximization

Overfitting

- Huge feature space with kernels, what about overfitting???
 - Maximizing margin leads to sparse set of support vectors
 - Some interesting theory says that SVMs search for simple hypothesis with large margin
 - Often robust to overfitting

What about classification time?

- For a new input **x**, if we need to represent $\Phi(\mathbf{x})$, we are in trouble!
- Recall classifier: $sign(\mathbf{w}.\Phi(\mathbf{x})+b)$

$$\mathbf{w} = \sum_i lpha_i y_i \Phi(\mathbf{x}_i)$$
 $b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$ for any k where $C > lpha_k > 0$

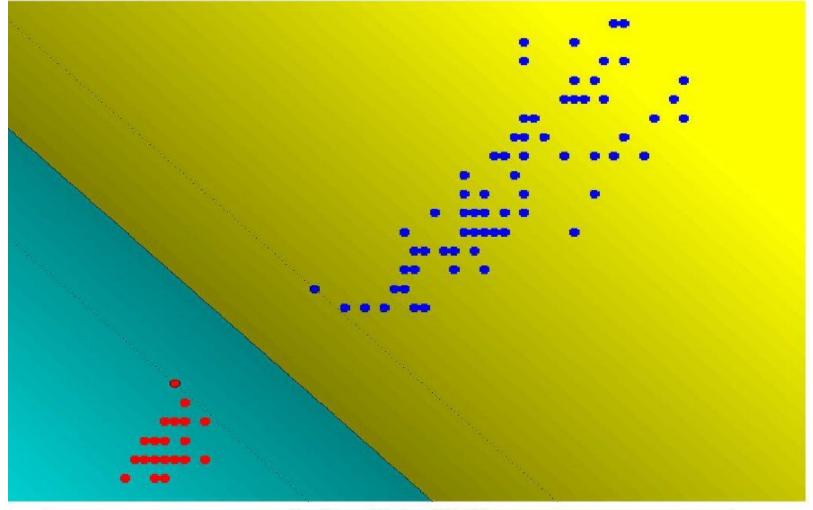
Using kernels we are cool!

$$K(\mathbf{u}, \mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$$

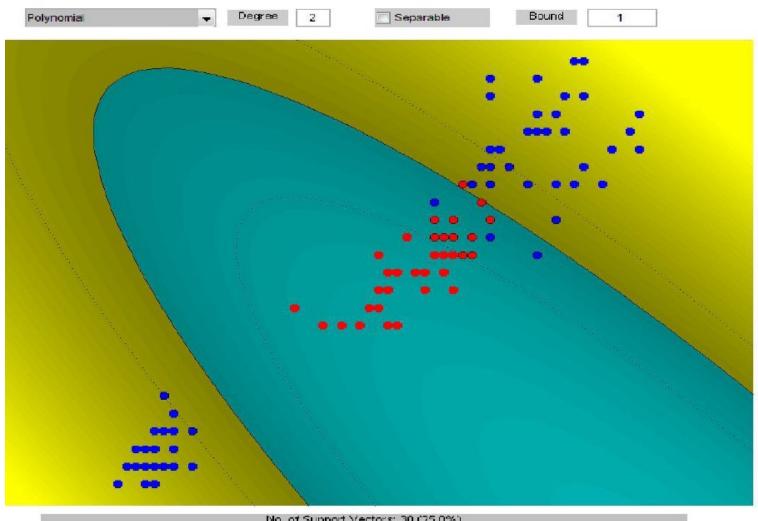
- Choose a set of features and kernel function
- Solve dual problem to obtain support vectors α_{i}
- At classification time, compute:

$$\begin{aligned} \mathbf{w} \cdot \Phi(\mathbf{x}) &= \sum_i \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i) \\ b &= y_k - \sum_i \alpha_i y_i K(\mathbf{x}_k, \mathbf{x}_i) \\ \text{for any } k \text{ where } C > \alpha_k > 0 \end{aligned} \qquad \text{Classify as} \qquad sign\left(\mathbf{w} \cdot \Phi(\mathbf{x}) + b\right)$$

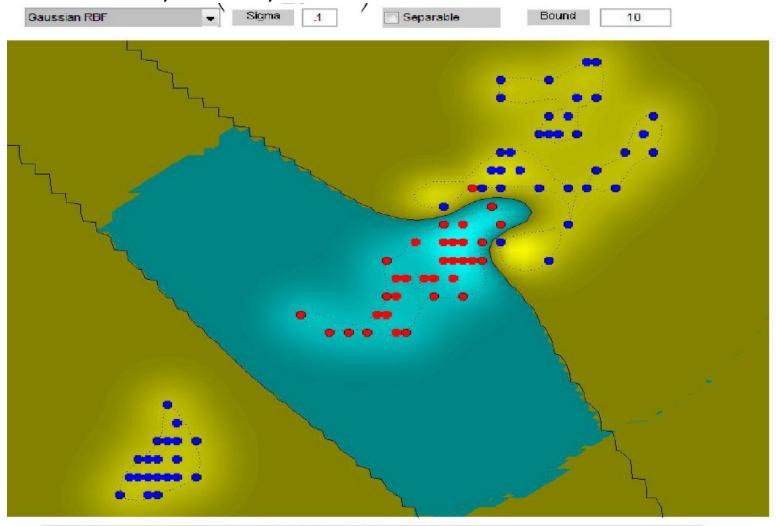
Iris dataset, 2 vs 13, Linear Kernel



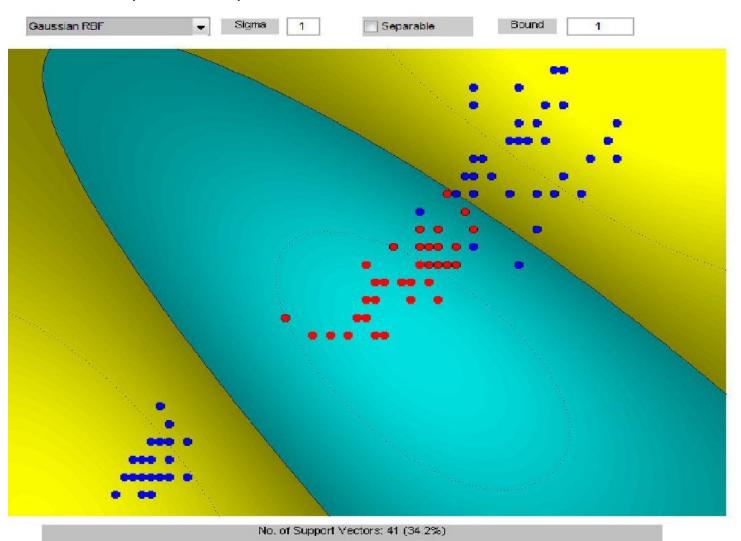
Iris dataset, 1 vs 23, Polynomial Kernel degree 2



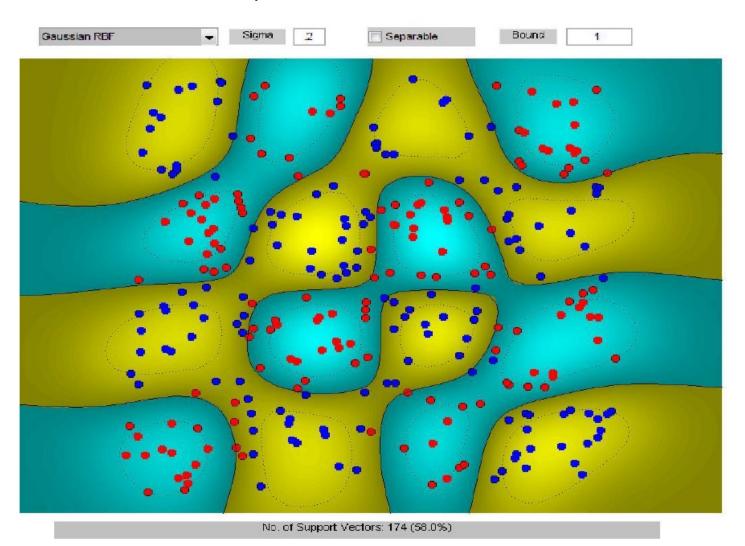
• Iris dataset, 1 vs 23, Gaussian RBF kernel



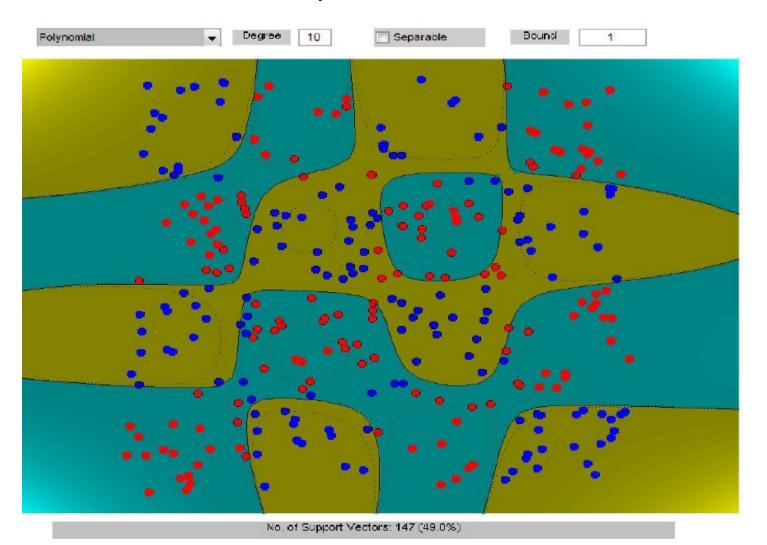
Iris dataset, 1 vs 23, Gaussian RBF kernel



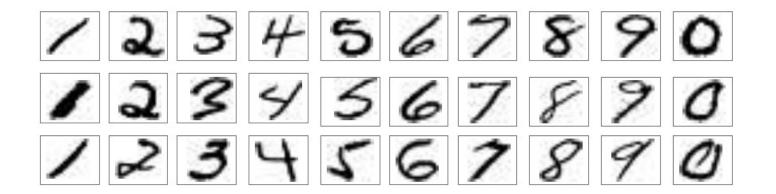
Chessboard dataset, Gaussian RBF kernel



Chessboard dataset, Polynomial kernel



USPS Handwritten digits



■ 1000 training and 1000 test instances

Results:

SVM on raw images ~97% accuracy

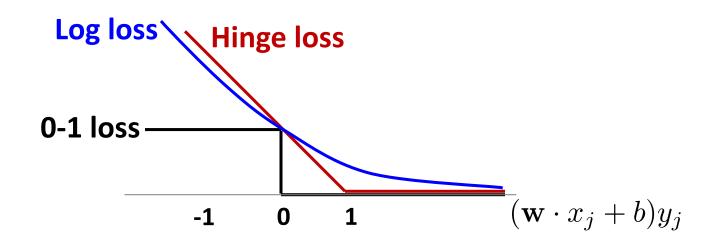
	SVMs	Logistic
		Regression
Loss function	Hinge loss	Log-loss

SVM: **Hinge loss**

$$loss(f(x_j), y_j) = (1 - (\mathbf{w} \cdot x_j + b)y_j))_+$$

<u>Logistic Regression</u>: <u>Log loss</u> (-ve log conditional likelihood)

$$loss(f(x_j), y_j) = -\log P(y_j \mid x_j, \mathbf{w}, b) = \log(1 + e^{-(\mathbf{w} \cdot x_j + b)y_j})$$



	SVMs	Logistic
		Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!

Kernels in Logistic Regression

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \Phi(\mathbf{x}) + b)}}$$

Regularized log likelihood:

$$\min_{\mathbf{w}} \sum_{i=1}^{n} \log(1 + e^{y_i(\mathbf{w} \cdot \Phi(x_i) + b)}) + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Equivalent constrained optimization problem:

Kernels in Logistic Regression

Lagrangian:

Derivatives:

Kernels in Logistic Regression

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \Phi(\mathbf{x}) + b)}}$$

Define weights in terms of features:

$$\mathbf{w} = \sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i}) \, \mathbf{y}_{i}$$

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}) + b)}}$$

$$= \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} K(\mathbf{x}, \mathbf{x}_{i}) + b)}}$$

• Derive simple gradient descent rule on $\alpha_{\rm i}$

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!
Solution sparse	Often yes!	Almost always no!
Semantics of output	"Margin"	Real probabilities

Kernel Trick

- Only dot products between data points appear in optimization
- Replace with kernel
- Valid kernels aka Mercer kernels
- Can apply to other methods such as linear regression, PCA (principal component analysis), ... etc.