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Convolutional Neural Networks

LeNet 5

Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning 
Applied to Document Recognition, Proceedings of the IEEE, 

86(11):2278-2324, November 1998

Compared to standard feedforward neural networks with similarly-sized layers, 
§ CNNs have much fewer connections and parameters 
§ and so they are easier to train, 
§ while their performance is likely to be only slightly worse, particularly 

for images as inputs.
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2-Dimensional Convolution
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2-Dimensional Convolution
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LeNet 5, LeCun et al 1998 

§ Input: 32x32 pixel image. Largest character is 20x20
(All important info should be in the center of the receptive fields of the 
highest level feature detectors)

§ Cx: Convolutional layer (C1, C3, C5) tanh nonlinear units
§ Sx: Subsample layer (S2, S4) average pooling
§ Fx: Fully connected layer (F6)    logistic/sigmoid units 
§ Black and White pixel values are normalized: 

E.g. White = -0.1, Black =1.175 (Mean of pixels = 0, Std of pixels =1)
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MINIST Dataset

60,000 original dataset
Test error: 0.95%

540,000 artificial distortions
+ 60,000 original 
Test error: 0.8%
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Misclassified examples
True label -> Predicted label
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LeNet 5 in Action

C1 C3 S4
Input
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LeNet 5, Shift invariance
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LeNet 5, Rotation invariance



10

LeNet 5, Noise resistance
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LeNet 5, Unusual Patterns
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Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton, 
Advances in Neural Information Processing Systems 2012

Alex Net

ImageNet Classification with Deep  
Convolutional Neural Networks
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The Architecture
Typical nonlinearities:

Here, Rectified Linear Units (ReLU) are used:

Non-saturating/Gradients don’t vanish – faster training 

(logistic function)
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The Architecture
Typical nonlinearities:

Here, Rectified Linear Units (ReLU) are used:

Non-saturating/Gradients don’t vanish – faster training 

A four-layer convolutional neural 
network with ReLUs (solid line) 
reaches a 25% training error rate on 
CIFAR-10 six times faster than an 
equivalent network with tanh neurons 
(dashed line)

(logistic function)
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The Architecture

5 convolution layers (ReLU)
3 overlapping max pooling – nonlinear downsampling (max value of 
regions)
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The Architecture

5 convolution layers (ReLU)
3 overlapping max pooling – nonlinear downsampling (max value of 
regions)
2 fully connected layers
output softmax
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Training
§ Trained with stochastic gradient descent
§ on two NVIDIA GTX 580 3GB GPUs 
§ for about a week

q 650,000 neurons
q 60,000,000 parameters
q 630,000,000 connections
q 5 convolutional layer with Rectified Linear Units (ReLUs), 3 

overlapping max pooling, 2 fully connected layer
q Final feature layer: 4096-dimensional

q Prevent overfitting – data augmentation, dropout trick
q Randomly extracted 224x224 patches for more data
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Preventing overfitting
1) Data augmentation:  The easiest and most common method to 
reduce overfitting on image data is to artificially enlarge the dataset 
using label-preserving transformations: 

§ image translation
§ horizontal reflections
§ changing RGB intensities

2) Dropout: set the output of each hidden neuron to zero w.p. 0.5.
§ So every time an input is presented, the neural network samples a 

different architecture, but all these architectures share weights. 
§ This technique reduces complex co-adaptations of neurons, since a 

neuron cannot rely on the presence of particular other neurons. 
§ forced to learn more robust features that are useful in conjunction with 

many different random subsets of the other neurons.
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q 15M images 
q 22K categories
q Images collected from Web
q Human labelers (Amazon’s Mechanical Turk crowd-sourcing)
q ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2010) 

o 1K categories
o 1.2M training images (~1000 per category)
o 50,000 validation images
o 150,000 testing images

q RGB images 
q Variable-resolution, but this architecture scales them to 256x256 size 

ImageNet
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Results
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Results: Image similarity

Test column
six training images that produce feature vectors in 
the last hidden layer with the smallest Euclidean distance 
from the feature vector for the test image.
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Results

AlexNet
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Other optimization tips and tricks

Ø Momentum: use exponentially weighted sum of previous 
gradients

can get pass plateaus more quickly, by ‘‘gaining momentum’’

Ø Initialization: cannot initialize to same value, all units in a 
hidden layer will behave same; randomly initialize unif[-b,b]

Ø Adaptive learning rates: one learning rate per parameter
e.g. RMSProp uses exponentially weighted average of squared gradients

Adam combines RMSProp with momentum
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Tips and tricks for preventing overfitting
Ø Dropout
Ø Data augmentation

Ø Early stopping: stop training when validation set error 
increases (with some look ahead).

Ø Neural Architecture search: tune number of layers and 
neurons per layer using grid search or clever optimization
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• First hypothesis (underfitting): better optimize

➢ Increase the capacity of the neural network 

➢ Check initialization 

➢ Check gradients (saturating units and vanishing gradients)

➢ Tune learning rate

• Second hypothesis (overfitting): use better regularization

➢ Dropout

➢ Data augmentation

➢ Early stopping

➢ Architecture search

• For many large-scale practical problems, you will need to use 
both: better optimization and better regularization!

Tips and Tricks for training deep NNs



Artificial Neural Networks: Summary

• Used to mimic distributed computation in brain
• Highly non-linear regression/classification
• Vector-valued inputs and outputs
• Potentially millions of parameters to estimate - overfitting
• Hidden layers learn intermediate representations – how many 

to use?

• Prediction – Forward propagation
• Gradient descent (Back-propagation), local minima problems

• Coming back in new form as deep networks
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Parametric methods

• Assume some model (Gaussian, Bernoulli, Multinomial, 
logistic, network of logistic units, Linear, Quadratic) with fixed 
number of parameters
– Gaussian Bayes, Naïve Bayes, Logistic Regression, Support 

vector machines, Neural Networks

• Estimate parameters (µ,s2,q,w,b) using MLE/MAP and plug in

• Pro – need few data points to learn parameters
• Con – Strong modeling assumptions, not satisfied in practice
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Non-Parametric methods

• Typically don’t make any modeling assumptions
• As we have more data, we should be able to learn more 

complex models
• Let number of parameters scale with number of training data 

• Some nonparametric methods
Classification: Decision trees, k-NN (k-Nearest Neighbor) 
classifier
Density estimation: k-NN, Histogram, Kernel density 
estimate
Regression: Kernel regression
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Decision Trees

• A nonparametric method
– Complexity increases with more data
– No fixed set of parameters

• Start with discrete features, then discuss 
continuous

• What does a decision tree represent?
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Decision Tree for Tax Fraud Detection
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Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

• Each internal node: test 
one feature Xi

• Each branch from a node: 
selects some value for Xi

• Each leaf node: 
prediction for Y

Refund Marital 
Status 

Taxable 
Income Cheat 

    
10 

 



Prediction

• Given a decision tree, how do we assign label to a 
test point
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Decision Tree for Tax Fraud Detection
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Decision Tree for Tax Fraud Detection
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Decision Tree for Tax Fraud Detection
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Decision Tree for Tax Fraud Detection
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Decision Tree for Tax Fraud Detection
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Decision Tree for Tax Fraud Detection
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Assign Cheat to “No”



So far…

• What does a decision tree represent
• Given a decision tree, how do we assign label 

to a test point

Discriminative or Generative?

Now …

• How do we learn a decision tree from training 
data
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How to learn a decision tree
• Top-down induction [ID3]
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Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle

Low High

(steps 1-5) after removing current feature

6. When all features exhausted, assign majority label to the leaf node

(Discrete features)

feature

feature



Which feature is best?
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X1 X2 Y
T T T
T F T
T T T
T F T
F T T
F F F
F T F
F F F

T F

Y: 4 Ts
0 Fs

Y: 1 Ts
3 Fs

T F

Y: 3 Ts
1 Fs

Y: 2 Ts
2 Fs

Good split if we are more certain 
about classification after split –
Uniform distribution of labels is bad

Absolutely
sure

Kind of
sure

Kind of
sure

Absolutely
unsure



Which feature is best?
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Pick the attribute/feature which yields maximum information gain:

H(Y) – entropy of Y      H(Y|Xi) – conditional entropy of Y



Andrew Moore’s Entropy in a Nutshell
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Low Entropy High Entropy

..the values (locations of 
soup) unpredictable... almost 
uniformly sampled 
throughout our dining room

..the values (locations 
of soup) sampled 
entirely from within 
the soup bowl



Entropy
• Entropy of a random variable Y

More uncertainty, 
more entropy!

Y ~ Bernoulli(p)

• Entropy: H(Y) = H(P) is the expected number of bits needed  to 
encode a randomly drawn value of Y~P under most efficient code 
optimized for distribution P 18
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Information Gain
• Advantage of attribute = decrease in uncertainty

– Entropy of Y before split

– Entropy of Y after splitting based on Xi

• Weight by probability of following each branch

• Information gain is difference

Max Information gain = min conditional entropy
19



Which feature is best to split?
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Pick the attribute/feature which yields maximum information gain:

Entropy of Y

Conditional entropy of Y

Feature which yields maximum reduction in entropy (uncertainty) 
provides maximum information about Y

= argmin
i

H(Y |Xi)



Information Gain
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X1 X2 Y
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Information Gain
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How to learn a decision tree
• Top-down induction [ID3, C4.5, C5, …]
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Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

6. Prune back tree to reduce overfitting

7. Assign majority label to the leaf node

C4.5

feature

feature

For “best” split of X, create new descendants of


