Convolutional Neural Networks

Compared to standard feedforward neural networks with similarly-sized layers,

= CNNs have much fewer connections and parameters

S—

= and so they are easier to train,

= while their performance is likely to be only slightly worse, particularly
for images as inputs. Goeeh - Jers

LeNet 5
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Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning
Applied to Document Recognition, Proceedings of the IEEE,
86(11):2278-2324, November 1998



2-Dimensional Convolution
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2-Dimensional Convolution
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LeNet 5, LeCun et al 1998
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Input layer: 32x32 C1: 6x28x28 S2: 6x14x14 C3: 16x10x10 S4: 1.6x5xS C5: 120 Fe: 84 Output: 10
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| convolution layer | subsampling layer | convolution layer | subsampling lager fully connected network |

feature extraction | classification

= Input: 32x32 pixel image. Largest character is 20x20
(All important info should be in the center of the receptive fields of the
highest level feature detectors)

= Cx: Convolutional layer (C1, C3, C5) tanh nonlinear units

= Sx: Subsample layer (52, 54) average pooling
= Fx: Fully connected layer (F6) logistic/sigmoid units

= Black and White pixel values are normalized:
E.g. White = -0.1, Black =1.175 (Mean of pixels = 0, Std of pixels =41)
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LeNet 5, Shift invariance
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LeNet 5, Rotation invariance
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LeNet 5, Noise resistance
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ImageNet Classification with Deep

Convolutional Neural Networks

Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton,

Advances in Neural Information Processing Systems 2012

Alex Net
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The Architecture

el _ o=
el + =7

f@)=@0+e*)"  (logistic function)
Here, Rectified Linear Units (ReLU) are used: f(z) = max(0,z)

Typical nonlinearities: f(z) = tanh(z) =

Non-saturating/Gradients don’t vanish — faster training

Sigmoid

13



The Architecture

Training error rate

Typical nonlinearities:

f(x) = tanh(x) =

fx)=Q+e @)1

et —e &

eLU _I_ e—ﬂi‘

(logistic function)

Here, Rectified Linear Units (ReLU) are used: f(z) = max(0,z)

Non-saturating/Gradients don’t vanish — faster training

0.75+

0.54

0254

A four-layer convolutional neural
network with ReLUs (solid line)
reaches a 25% fraining error rate on
CIFAR-10 six times faster than an
equivalent network with tanh neurons
(dashed line)
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The Architecture
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The Architecture
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5 convolution layers (RelLU)

3 overlapping max pooling — nonlinear downsampling (max value of
regions)

2 fully connected layers

output softmax

16



O O 0 O

O

Trained with stochastic gradient descent
on two NVIDIA GTX 580 3GB GPUs

- - =

for about a week
—_—

650,000 neurons
60,000,000 parameters

630,000,000 connections

5 convolutional layer with Rectified Linear Units (ReLUs), 3
overlapping max pooling, 2 fully connected layer

Final feature layer: 4096-dimensional

Prevent overfitting — data augmentation, dropout trick

EEEE——

Randomly extracted 224x224 patches for more data 17



Preventing overfitting

1) Data augmentation: The easiest and most common method to
reduce overfitting on image data is to artificially enlarge the dataset
using label-preserving transformations:

= image translation
= horizontal reflections

= changing RGB intensities

2) Dropout: set the output of each hidden neuron to zero w.p. 0.5.

= So every time an input is presented, the neural network samples a
different architecture, but all these architectures share weights.

= This technique reduces complex co-adaptations of neurons, since a
neuron cannot rely on the presence of particular other neurons.

= forced to learn more robust features that are useful in conjunction witr

many different random subsets of the other neurons. 18



ImageNet

d 15M images .~

Q 22K categories

d Images collected from Web

d Human labelers (Amazon’s. Mechanical Turk crowd-sourcing)

O ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2_0_1_9)

CE—

o 1K categories
o 1.2M training images (~1000 per category)
o 50,000 validation images

o 150,000 testing images

O RGB images

[ Variable-resolution, but this architecture scales them to 256x256 size

19
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Results

container s motor scooter

mite container ship motor scooter leapard
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Results: Image S|m|Iar|ty

six training images that produce feature vectors in
Test column the last hidden layer with the smallest Euclidean distance
from the feature vector for the test image. 21



Results
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Other optimization tips and tricks \/"f

» Momentum: use exponentially weighted sum of previous
gradients
= (1) = (t—1)

Vo = Vol(f (x“)),y(‘)) + BVgy Y
I W

can get pass plateaus more quickly, by “gaining momentum”

> Initialization: cannot initialize to same value, all units in a
hidden layer will behave same; randomly initialize unif[-b,b]

> Adaptive learning rates: one learning rate per parameter ~

e.g. RMSProp uses exponentially weighted average of squared gradients

_ 2 — V [ f X(t) ’ ®)
t) _ 57(75 1) 4 (1— é) (Vel(f(x(t)>ay(t))> vét) = = i/i(T_):TL_)}
T e - ~ — ~ v

. . VJ
( Adam) combines RMSProp with momentum 23



Tips and tricks for preventing overfitting

-

> Dropout

> Data augmentation <~

> Early stopping: stop training when validation set error
increases (with some look ahead).

© Training Validazion

nurnbzr of zpodhs

> Neural Architecture search: tune number of layers and

neurons per layer using grid search or clever optimization
24



Tips and Tricks for training deep NNs

./ * First hypothesis (underfitting): better optimize
> |Increase the capacity of the neural network
> Check initialization
> Check gradients (saturating units and vanishing gradients)

> Tune learning rate

«” * Second hypothesis (overfitting): use better regularization
> Dropout
> Data augmentation
> Early stopping

> Architecture search

- For many large-scale practical problems, you will need to use
both: better optimization and better regularization!

25



Artificial Neural Networks: Summary

Used to mimic distributed computation in brain

Highly non-linear regression/classification

Vector-valued inputs and outputs

Potentially millions of parameters to estimate - overfitting

Hidden layers learn intermediate representations — how many
to use?

Prediction — Forward propagation ~~
Gradient descent (Back-propagation), local minima problems

Coming back in new form as deep networks



Decision Trees

Aarti Singh

Machine Learning 10-315
Feb 20, 2023
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Parametric methods

Assume some model (Gaussian, Bernoulli, Multinomial,
logistic, network of logistic units, Linear, Quadratic) with fixed
number of parameters

— Gaussian Bayes, Naive Bayes, Logistic Regression, Support
vector machines, Neural Networks

Estimate parameters (u1,02,0,w,[3) using MLE/MAP and plug in

Pro — need few data points to learn parameters
Con — Strong modeling assumptions, not satisfied in practice



Non-Parametric methods

Typically don’t make any modeling assumptions

As we have more data, we should be able to learn more
complex models

Let number of parameters scale with number of training data

Some nonparametric methods

Classification: Decision trees, k-NN (k-Nearest Neighbor)
. . ’_/—
classifier

Density estimation: k-NN, Histogram, Kernel density
estimate

Regression: Kernel regression



Decision Trees
* A nonparametric method

— Complexity increases with more data
— No fixed set of parameters

e Start with discrete features, then discuss
continuous

 What does a decision tree represent?



Decision Tree for Tax Fraud Detection

Refund |Marital Taxabple

X Status Income Cheat

| Refund |

 Each internal node: test
Married one feature X,

* Each branch from a node:
selects some value for X

NO

e Each leaf node:
prediction for Y



Prediction

* Given a decision tree, how do we assign label to a
test point



Decision Tree for Tax Fraud Detection

Query Data

Xl X2 X3 Y
Refund Marital Taxable

Status Income Cheat

Refund ~> No Married | 80K ?
N
NO MarSt
Single,y/orced \/Iarried
TaxInc NO

< SOV \> 80K
NO

YES



Decision Tree for Tax Fraud Detection

Query Data

Refund Marital Taxable

Status Income Cheat
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Refund No Married |80K ?
N
NO MarSt
Single,y/orced \/Iarried
TaxInc NO

< SOV \> 80K
NO

YES



Decision Tree for Tax Fraud Detection

Query Data

Refund Marital Taxable

Status Income Cheat

Refund | - > |No Married | 80K ?
Ye/ wo <4~ -
NO MarSt
Single,?’/orced \/Iarried
TaxInc NO

< SOV \> 80K
NO

YES



Decision Tree for Tax Fraud Detection

Query Data

Refund Marital Taxable

Status Income Cheat

Refund o - No Married |80K ?
V wo ///
NO MarSt |~
Single,?’/orced \/Iarried
TaxInc NO

< SOV \> 80K
NO YES

10



Decision Tree for Tax Fraud Detection

Query Data

Refund Marital Taxable

Status Income Cheat

SO No  |Married |80K |2
NO MarSt A/’/
Single,?’/orced \/Iarried
TaxInc NO

< SOV \> 80K
NO YES

11



Decision Tree for Tax Fraud Detection

Query Data

Refund Marital Taxable
Status Income Cheat

Refund
N
NO MarSt -
Singlery/orced \Aarried -7~ Assign Cheat to "No
TaxInc NO 2"

< 80:/ \> 80K
NO

YES



So far...

 What does a decision tree represent

* Given a decision tree, how do we assign label
to a test point

Discriminative or Generative?

Now ...

* How do we learn a decision tree from training
data



How to learn a decision tree

* Top-down induction [ID3]

Main loop:
«“ ” .l Refund |&
1. X< the[*best”|decision feature for next node
2. Assign X as decision feature for node 54 d

3. For each value of X, create new descendant of  pNe
node (Discrete features)

Single

4. Sort training examples to leaf nodes Low

5. If training examples perfectly classified, Then NO YES
STOP, Else iterate over new leaf nodes
(steps 1-5) after removing current feature

6. When all features exhausted, assign majority label to the leaf node

14



Which feature is best?

X; | X | Y
T | T
T | F
T | T
T | F
F T
F | F
F T
F | F

X1 Xo
T F T F
Y:4Ts Y:1Ts Y:3Ts Y:2Ts
OFs 3Fs 1Fs 2 Fs
G— o= i— e
Absolutely  Kind of Kind of Absolutely
sure sure sure unsure

Good split if we are more certain

about classification after split —
Uniform distribution of labels is bad

15



Which feature is best?

[21+,5-] [8+,30—] [18+,33-] [11+,2-]

— o= P e

Pick the attribute/feature which yields maximum information gain:

argmax I(Y, X;) = argmax[H(Y) — H(Y|X;)]
7 et ? P L

H(Y) —entropy of Y  H(Y|X,) — conditional entropy of Y

16



Andrew Moore’s Entropy in a Nutshell

Low Entropy k High Entropy /\
..the values (locations ..the values (locations of
of soup) sampled soup) unpredictable... almost
entirely from within uniformly sampled
the soup bowl throughout our dining room




Entropy
E [, P

 Entropy of a random variable Y N
Z P(Y =y)log, P(Y = y)
More uncertainty, ) P Q’J (\,\;3
more entropy! *1 Z - Unlform $
T Ma ‘é réﬁl

Y ~ Bernoulli(p)

,

Deterministic
Zero entropy

Entropy, H(Y)

llllllllllll
llllllllll

* Entropy: H(Y) = H(P) is the expected number of bits needed to
encode a randomly drawn value of Y~P under most efficient code
optimized for distribution P

18



Information Gain

* Advantage of attribute = decrease in uncertainty
— Entropy of Y before split

ZP y)logy P(Y =y) &

)

— Entropy of Y after spllttmg based on X
* Weight by probability of following each branch

HO LX) = S POG=oH | Ximay = E(HOIXER)
Sﬂ x —
= —ZP(Xiza;)ZP(Y=y|Xi=x)loggP(Y=y\Xiza:)
r /

* Information gain is difference
I(Y,X;) =H(Y) - H( | Xj)

Max Information gain = min conditional entropy
19



Which feature is best to split?

Pick the attribute/feature which yields maximum information gain:

argmax I(Y, X;) = argmax[H(Y) — H(Y|X;)] -~

= argmin H(Y|X;) v
Entropy of Y Z P(Y =y)log, P(Y = y)

Conditional entropy of Y H(Y | X;) = Y P(X;=2)H(Y|X;=2)
X

Feature which yields maximum reduction in entropy (uncertainty)
provides maximum information about Y




Information Gain
HY\Ki=

H(Y | X;) = —ZP(Xiza:)-EP(Yzy|XZ-=:B)|092P(Y=y|X7;=a:)’
L___g!‘" T . =

—

X1 X2 Y Xl X2
T T T F T F
T F
T T
Y: 4 Ts Y:1Ts.r Y:3Ts Y:2 Ts

T F O Fs 3 Fs 1 Fs 2 Fs
F T AH(Y|X, =T) HY|X;=T)
F F l l‘]m\“'D'(ﬂ’o =0
F T sHY|X, =F) H(Y|X; = F)
F F 1

1 z{i -+ % \’)‘L 1-'

21



Information Gain

H(YIRi=2)
HY |X;)) = =) P(X;=a)) PY=y|X;=2)loga P(Y =y | X; =)
4y \y _)
X1 X2 Y Xl X2 /
T T T F T F
T | F
T T
Y:4Ts Y:1Ts Y:3Ts Y:2Ts
T | F 0Fs 3 Fs 1Fs 2 Fs
~ 1 1.1 1 3 3
F F H(Y|X1):——[110 0g9 —5[410g24+410g24
~ 1.3 3 1 1 1 1 1
F T A(Y1%) ={- 5 logy 5 + 7 logy 7)) 515 losa 5 + 5 los )
F | F ‘ '
>0

H(Y|X1) < H(Y|X5) .



Main loop:
1.
2.
3.

How to learn a decision tree

* Top-down induction [ID3, C4.5, C5, ...]

C4.5

X « the [“best”|decision feature for next node”

Assign X as decision feature for node

For |“best”|split of X, create new descendants of
node -

. Sort training examples to leaf nodes

. If training examples perfectly classified, Then

STOP, Else iterate over new leaf nodes

.|Prune back tree|to reduce overfitting

. Assign majority label to the leaf node

Refund
ny No
NO MarSt
Single, Dyérced arried
TaxInc NO

< 80Ii/ \> 80K
NO

YES

23



