Convolutional Neural Networks

Compared to standard feedforward neural networks with similarly-sized layers,

- § CNNs have much fewer connections and parameters
- and so they are easier to train,
- while their performance is likely to be only slightly worse, particularly for images as inputs.shared parameters

LeNet 5

Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: **Gradient-Based Learning Applied to Document Recognition**, Proceedings of the IEEE, 86(11):2278-2324, November **1998**

2-Dimensional Convolution

2-Dimensional Convolution

LeNet 5, LeCun et al 1998

- **Input:** 32x32 pixel image. Largest character is 20x20 (All important info should be in the center of the receptive fields of the highest level feature detectors)
- **Cx:** Convolutional layer (C1, C3, C5) tanh nonlinear units
- **Sx:** Subsample layer (S2, S4) average pooling
- **Fx:** Fully connected layer (F6) logistic/sigmoid units
- 4 § Black and White pixel values are normalized: E.g. White = -0.1 , Black =1.175 (Mean of pixels = 0, Std of pixels = 1)

MINIST Dataset

$$
363/7968485
$$
\n
$$
217978894
$$
\n
$$
17978894
$$
\n
$$
17978894
$$
\n
$$
17978894
$$
\n
$$
16186450
$$
\n
$$
22239480
$$
\n
$$
22239480
$$
\n
$$
0.438073857
$$
\n
$$
0.46460286
$$
\n
$$
728169861
$$

540,000 artificial distortions + 60,000 original Test error: 0.8%

60,000 original dataset

Test error: 0.95%

Misclassified examples

True label -> Predicted label

 A , 5, A , 7, 5, 8, A , 5, A , A , 5, A , 5, 5, 7, 3 $\begin{array}{ccccc} \mathbf{Q} & \math$ 8 5 $\frac{1}{4}$ 5 $\frac{1}{4}$ 5 $\frac{1}{4}$ 5 $\frac{1}{8}$ $\frac{1}{8}$ 6 $\frac{1}{9}$ 6 $\frac{1}{9}$ 6 $\frac{1}{9}$ 6 $\frac{1}{9}$ 6 $\frac{1}{9}$ 6 $\frac{1}{9}$ $\begin{array}{ccc} \mathbf{9} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ 9 \rightarrow 4 & 2 \rightarrow 0 & 6 \rightarrow 1 & 3 \rightarrow 5 & 3 \rightarrow 2 & 9 \rightarrow 5 & 6 \rightarrow 0 & 6 \rightarrow 0 & 6 \rightarrow 8 \end{array}$ $A_{4\rightarrow 6}$ $A_{5\rightarrow 3}$ $A_{9\rightarrow 4}$ $A_{4\rightarrow 6}$ $A_{2\rightarrow 7}$ $A_{9\rightarrow 7}$ $A_{1\rightarrow 3}$ $A_{9\rightarrow 4}$ $A_{9\rightarrow 4}$ $A_{9\rightarrow 4}$ $\sum_{8 \rightarrow 7}$ 4 $\sum_{4 \rightarrow 2}$ 8 $\rightarrow 4$ 3 $\rightarrow 5$ 8 $\rightarrow 4$ 6 $\rightarrow 5$ 8 $\rightarrow 5$ 3 $\rightarrow 8$ 3 $\rightarrow 8$ 9 $\rightarrow 8$ **f g** \circ **g** \circ **g** \circ **g** \circ **g** \circ **g** \circ **f g g** \circ **g** \circ **f** \circ **f 2** $\underset{2\rightarrow 8}{\mathcal{S}}$ $\underset{8\rightarrow 5}{\mathcal{S}}$ $\underset{4\rightarrow 9}{\mathcal{Z}}$ $\underset{7\rightarrow 2}{\mathcal{Z}}$ $\underset{7\rightarrow 2}{\mathcal{Z}}$ $\underset{6\rightarrow 5}{\mathcal{Z}}$ $\underset{9\rightarrow 7}{\mathcal{S}}$ $\underset{6\rightarrow 1}{\mathcal{S}}$ $\underset{5\rightarrow 6}{\mathcal{S}}$ $\underset{5\rightarrow 0}{\mathcal{S}}$

LeNet 5 in Action

LeNet 5, Shift invariance

LeNet 5, Rotation invariance

LeNet 5, Noise resistance

LeNet 5, Unusual Patterns

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton,

Advances in Neural Information Processing Systems 2012

Alex Net

Typical nonlinearities:

$$
f(x) = \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}
$$

$$
f(x) = (1 + e^{-x})^{-1}
$$
 (logistic function)

 \sim

 ∞

Here, **Rectified Linear Units (ReLU)** are used: $f(x) = max(0, x)$

Non-saturating/Gradients don't vanish – faster training

Typical nonlinearities:

$$
f(x) = \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}
$$

$$
f(x) = (1 + e^{-x})^{-1}
$$
 (logistic function)

Here, **Rectified Linear Units (ReLU)** are used: $f(x) = max(0, x)$

Non-saturating/Gradients don't vanish – faster training

A four-layer convolutional neural network with ReLUs (solid line) reaches a 25% training error rate on CIFAR-10 six times faster than an equivalent network with tanh neurons (dashed line)

5 convolution layers (ReLU)

3 overlapping max pooling – nonlinear downsampling (max value of regions)Single depth slice

 V

max pool with 2x2 filters and stride 2

5 convolution layers (ReLU)

3 overlapping max pooling – nonlinear downsampling (max value of regions)

2 fully connected layers

output softmax

Training

- **•** Trained with stochastic gradient descent
- § on two NVIDIA GTX 580 3GB GPUs
- § for about a week
- \Box 650,000 neurons
- \Box 60,000,000 parameters
- \Box 630,000,000 connections
- \Box 5 convolutional layer with Rectified Linear Units (ReLUs), 3 overlapping max pooling, 2 fully connected layer
- \Box Final feature layer: 4096-dimensional
- \Box Prevent overfitting data augmentation, dropout trick
- Randomly extracted 224x224 patches for more data

Preventing overfitting

1) **Data augmentation**: The easiest and most common method to reduce overfitting on image data is to artificially enlarge the dataset using label-preserving transformations:

- image translation
- **•** horizontal reflections
- changing RGB intensities
- 2) **Dropout**: set the output of each hidden neuron to zero w.p. 0.5.
	- § So every time an input is presented, the neural network samples a different architecture, but all these architectures share weights.
	- This technique reduces complex co-adaptations of neurons, since a neuron cannot rely on the presence of particular other neurons.
	- 18 • forced to learn more robust features that are useful in conjunction with many different random subsets of the other neurons.

ImageNet

- \Box 15M images \angle
- \Box 22K categories
- \Box Images collected from Web
- Human labelers (Amazon's Mechanical Turk crowd-sourcing)
- ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2010)
	- o 1K categories
	- \circ 1.2M training images (\sim 1000 per category)
	- o 50,000 validation images
	- \circ 150,000 testing images
- RGB images
- Variable-resolution, but this architecture scales them to 256x256 size

Results

Results: Image similarity

21 six training images that produce feature vectors in
Test column the last bidden laver with the smallest Euclidean di the last hidden layer with the smallest Euclidean distance from the feature vector for the test image.

Other optimization tips and tricks

Ø **Momentum:** use exponentially weighted sum of previous gradients

$$
\overline{\nabla}_{\theta}^{(t)} = \nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)}) + \beta \overline{\nabla}_{\theta}^{(t-1)}.
$$

can get pass plateaus more quickly, by ''gaining momentum''

- Ø **Initialization:** cannot initialize to same value, all units in a hidden layer will behave same; randomly initialize unif [-b,b]
- **EXADER ADAPTIVE LEARTING rates: one learning rate per parameter** \sim

e.g. RMSProp uses exponentially weighted average of squared gradients

$$
\gamma^{(t)} = \beta \gamma^{(t-1)} + (1-\beta) \left(\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)}) \right)
$$

Adam combines RMSProp with momentum

Tips and tricks for preventing overfitting

- Ø **Dropout**
- \triangleright Data augmentation $\check{\smile}$
- Ø **Early stopping:** stop training when validation set error increases (with some look ahead). **O** Training **O** Validation

Ø **Neural Architecture search:** tune number of layers and neurons per layer using grid search or clever optimization

Tips and Tricks for training deep NNs

- First hypothesis (underfitting): better optimize
	- \triangleright Increase the capacity of the neural network
	- \triangleright Check initialization
	- \triangleright Check gradients (saturating units and vanishing gradients)
	- \triangleright Tune learning rate
- Second hypothesis (overfitting): use better regularization
	- ➢ Dropout
	- \triangleright Data augmentation
	- \triangleright Early stopping
	- \triangleright Architecture search

• For many large-scale practical problems, you will need to use both: better optimization and better regularization!

Artificial Neural Networks: Summary

- Used to mimic distributed computation in brain
- Highly non-linear regression/classification
- Vector-valued inputs and outputs
- Potentially millions of parameters to estimate overfitting
- Hidden layers learn intermediate representations how many to use?
- Prediction Forward propagation \checkmark
- Gradient descent (Back-propagation), local minima problems
- Coming back in new form as deep networks

Decision Trees

Aarti Singh

Machine Learning 10-315 Feb 20 , 2023

Parametric methods

- Assume some model (Gaussian, Bernoulli, Multinomial, logistic, network of logistic units, Linear, Quadratic) with fixed number of parameters
	- Gaussian Bayes, Naïve Bayes, Logistic Regression, Support vector machines, Neural Networks
- Estimate parameters (μ , σ^2 , θ ,w, β) using MLE/MAP and plug in
- **Pro** need few data points to learn parameters
- **Con** Strong modeling assumptions, not satisfied in practice

Non-Parametric methods

- Typically don't make any modeling assumptions \boldsymbol{y}
- As we have more data, we should be able to learn more complex models \rightarrow
- Let number of parameters scale with number of training data
- Some nonparametric methods

Classification: Decision trees, k-NN (k-Nearest Neighbor) classifier

Density estimation: k-NN, Histogram, Kernel density estimate

Regression: Kernel regression

Decision Trees

- A nonparametric method
	- Complexity increases with more data
	- No fixed set of parameters
- Start with discrete features, then discuss continuous

• What does a decision tree represent?

- Each internal node: test one feature X_i
- Each branch from a node: selects some value for X_i
- Each leaf node: prediction for Y

Prediction

• Given a decision tree, how do we assign label to a test point

7

So far…

- What does a decision tree represent
- Given a decision tree, how do we assign label to a test point

Discriminative or Generative?

Now …

• How do we learn a decision tree from training data

How to learn a decision tree

• Top-down induction [ID3]

Main loop:

- 1. $X \leftarrow$ the "best" decision feature for next node
- 2. Assign X as decision feature for node
- 3. For each value of X , create new descendant of $node$ (Discrete features)
- 4. Sort training examples to leaf nodes
- 5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes (steps 1-5) after removing current feature
- 6. When all features exhausted, assign majority label to the leaf node

Which feature is best?

Good split if we are more certain about classification after split – Uniform distribution of labels is bad

Which feature is best?

Pick the attribute/feature which yields maximum information gain:

$$
\arg \max_{i} I(Y, X_i) = \arg \max_{i} [H(Y) - H(Y|X_i)]
$$

 $H(Y)$ – entropy of Y $H(Y|X_i)$ – conditional entropy of Y

Andrew Moore's Entropy in a Nutshell

Low Entropy \searrow High Entropy

..the values (locations of soup) sampled entirely from within the soup bowl

throughout our dining room ..the values (locations of soup) unpredictable... almost uniformly sampled

Entropy

• Entropy of a random variable Y

• **Entropy**: $H(Y) = H(P)$ is the expected number of bits needed to encode a randomly drawn value of *Y~P* under most efficient code optimized for distribution *P* 18

Information Gain

- Advantage of attribute = decrease in uncertainty
	- Entropy of Y before split

$$
H(Y) = -\sum_{y} P(Y = y) \log_2 P(Y = y) \cancel{\bigvee}
$$

- $-$ Entropy of Y after splitting based on X_i
	- Weight by probability of following each branch

$$
H(Y | X_i) = \sum_{x} P(X_i = x) H(Y | X_i = x) = \mathbf{E} [M(Y | X_i = x)]
$$

=
$$
-\sum_{x} P(X_i = x) \sum_{y} P(Y = y | X_i = x) \log_2 P(Y = y | X_i = x)
$$

• Information gain is difference

$$
I(Y, X_i) = H(Y) - H(Y | X_i)
$$

Max Information gain = min conditional entropy

Which feature is best to split?

Pick the attribute/feature which yields maximum information gain:

$$
\arg \max_{i} I(Y, X_i) = \arg \max_{i} [H(Y) - H(Y|X_i)] \quad \checkmark
$$

$$
= \arg \min_{i} H(Y|X_i) \quad \checkmark
$$

Entropy of Y
$$
H(Y) = -\sum_{y} P(Y = y) \log_2 P(Y = y)
$$

Conditional entropy

of Y
$$
H(Y | X_i) = \sum_x P(X_i = x)H(Y | X_i = x)
$$

Feature which yields maximum reduction in entropy (uncertainty) provides maximum information about Y

$$
H(Y|X_i) = -\sum_{x} P(X_i = x) \underbrace{\sum_{y} P(Y = y | X_i = x) \log_2 P(Y = y | X_i = x)}_{y} \underbrace{\sum_{y} P(Y = y | X_i = x) \log_2 P(Y = y | X_i = x)}_{x} \underbrace{\sum_{y} P(Y = y | X_i = x) \log_2 P(Y = y | X_i = x)}_{x} \underbrace{\sum_{y} P(Y = y | X_i = x) \log_2 P(Y = y | X_i = x)}_{x} \underbrace{\sum_{y} P(Y = y | X_i = x) \log_2 P(Y = y | X_i = x)}_{x} \underbrace{\sum_{y} P(Y = y | X_i = x) \log_2 P(Y = y | X_i = x)}_{x} \underbrace{\sum_{y} P(Y = y | X_i = x) \log_2 P(Y = y | X_i = x)}_{x} \underbrace{\sum_{y} P(Y | X_i = y)}_{x} \
$$

Information Gain			
$H(Y X_i) = -\sum_x P(X_i = x) \sum_y P(Y = y X_i = x) \log_2 P(Y = y X_i = x)$			
X_1	X_2	X_1	X_2
T	T	T	T
T	T	T	
T	F	T	
T	F	T	
F	T	0	
F	F	F	
F	F		
F	F		
F	F		
F	F		
F	F		
F	F		
F	F		
F	F		
F	F		
F	F		
F	F		
F	F		
F	F		
F	F		
F	F		
F	F		
F	F		
F	F		
F	F		
F	F		
F	F		
F	F		
F	F		
F	F		
F	F		

22

How to learn a decision tree

• Top-down induction [ID3, C4.5, C5, ...]

- 4. Sort training examples to leaf nodes
- 5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes
- 6. Prune back tree to reduce overfitting 7. Assign majority label to the leaf node

NO YES

 $< 80K$ $> 80K$