How to learn a decision tree ‘i

| wax TCY, 20D
 Top-down induction [ID3, C4.5, C5, ...] tfcahm
Main loop: C4.5 _
z .. fund |
1. X< the[*best”|decision feature for next node  Fefond No
\\
2. Assign X as decision feature for node 56 —
_?3. For “best”\split of X, create new descendants of Single, Dyérced arried
node —
TaxInc NO
4. Sort training examples to leaf nodes <80K/ \>80K
=>5. If training examples perfectly classified, Then NO YES

STOP, Else iterate over new leaf nodes (dgnt dicerd

—26.|Prune back tree

to reduce overfitting Ww 3 WM.)

7. Assign majority label to the leaf node
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Handling continuous features (C4.5)

Convert continuous features into discrete by setting a threshold.
What threshold to pick?

Search for best one as per information gain. Infinitely many??

Don’t need to search over more than ~ n (hnumber of training
data),e.g. say X, takes values x;(1), x,2), ..., x,{" in the training set.

Then possible thresholds are '/

[X: P+ x,2]/2, [x, 2+ x,3]/2, ..., [x, "V + x,M]/2

—

—
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Poll

 What’s the maximum depth of a decision tree
learnt using ID3?

 What’s the maximum depth of a decision tree
learnt using C4.57



Decision Tree more generally...

X7 2 0.5, X5 ={a,b}lor{c,d}

o

Features can be discrete,
continuous or categorical

Each internal node: test
some set of features {X}

Each branch from a node:
selects a set of value for
{Xi}

Each leaf node:
prediction for Y



Expressiveness of Decision Trees

Decision trees in general (without pruning) can express any
function of the input features.

E.g., for Boolean functions, truth table row - path to leaf:

A B AxorB

/\
F F F
F

7

' 2

p E FI7§I Ffi
- F

There is a decision tree which perfectly classifies a training set
with one path to leaf for each example - overfitting

But it won't generalize well to new examples - prefer to find

more compact decision trees
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Pruning the tree

 Many strategies for picking simpler trees:

— Pre-pruning
* Fixed depth (e.g. ID3) Refund
. Yes No
* Fixed number of leaves \
] MarSt
— Post—prunlng _ ;n\(le- fonce fa“ Single, Di d aNied

* Chi-square test
— Convert decision tree to a set of rules

— Eliminate variable values in rules which are independent of
label (using chi-square test for independence)

NO

— Simplify rule set by eliminating unnecessary rules

— Information Criteria: MDL(Minimum Description Length)

'\, TS
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Information Criteria

* Penalize complex models by introducing cost

f = argmin li loss(fr(X;),Y;) + pen(T)
T n,-q _ _ | . T

| |
log likelihood cost

—

(fr(X;) — Y;)? regression -~
classification

loss(fr(X;),Y;)

L (x#y;

pen(T) o |T| penalize trees with more leaves

CART — optimization can be solved by dynamic programming
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Example of 2-feature decision tree
classifier .
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How to assign label to each leaf

Classification — Majority vote Regression — ?
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How to assign label to each leaf

Classification — Majority vote Regression — Constant/
Linear/Poly fit
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Regression trees

x (1) x® v

Gender | Rich? | Num. # travel | Age
Children | per yr.

F No 2 5 38

M No 0 2 25

M Yes 1 0 72

Num Children?

2 2 <2

Gender?

Female Male

Predicted age=39 Predicted age=36

Average (fit a constant ) using
training data at the leaves
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What you should know

Decision trees are one of the most popular data mining tools
e Simplicity of design
e |Interpretability 22—
e Ease of implementation
e Good performance in practice (for small dimensions)
Information gain to select attributes (ID3, C4.5,...) =~ S g a““bw

Decision trees will overfit!!!

— Must use tricks to find “simple trees”, e.g.,
* Pre-Pruning: Fixed depth/Fixed number of leaves
* Post-Pruning: Chi-square test of independence
» Complexity Penalized/MDL model selection

Can be used for classification, regression and density
estimation too
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k-NN classifier -~
Nonparametric kernel regression
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k-NN classifier
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k-NN classifier

Test document
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k-NN classifier (k=5)

Test document

What should we predict? ...

@ Sports

O Science

® Arts

Average? Majority? Why?
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k-NN classifier

» Optimal Classifier: f(z) = argmaxP(ylz) -
= arg myaxP(x\y)P(y)cf

e k-NN Classifier: fuyn(z) = arg max Punn(z|y) P ()
~ — )
= argmax ky, \&/’é
Yy o

~ k .
P zly) = =2 > # training pts of classy [ —
kv (21) Ny amongst k NNs of x Z ’ .

L—— # total training pts of classy
Bly) ="y < =9ty craneli ) fae lid y
Y nehwmﬂm‘ml\dwm‘xy



1-Nearest Neighbor (kNN) classifier
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2-Nearest Neighbor (kNN) classifier
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3-Nearest Neighbor (kNN) classifier
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5-Nearest Neighbor (kNN) classifier
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What is the best k?

1-NN classifier decision boundary Voronoi

Diagram

K=1
locga & = swodhes decigion  baudaey

As k increases, boundary becomes smoother (less jagged).
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What is the best k?
—

Approximation vs. Stability (aka Bias vs Variance) Tradeoff

* Larger K => predicted label is more stable (low variance) but
potentially less accurate (high bias)

 Smaller K => predicted label can approximate best classifier
well given enough data (low bias) but predict label is
unstable (high variance)
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Local Kernel Regression

* What is the temperature

in the room? at location x?
’..oo ...00
o _© o _©
o |
° .0 ’:o ® ’o:
° P °o®
> |e 00 ool SRR ° Hby
lo o ... ....... lo o .:. ......I
°
.0. .0'0.0 .o. ‘.o..o.o‘o.o.l
.1 ~ S Yl v, 5
T = — Z Y; T(x) — 7/;1 || X —|[<h
ni=1 2ui=1 H|Xi=al|<h ] n,

Average "Local” Average
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Local Kernel Regression @

G\thd. a"vﬁsﬂ' W= "L = E—U‘ \

Nonparametric estlmator -,-:,...
Nadaraya-Watson Kernel Estimator

———

X—X;
(X)) = zn: w,;Y; Where wi(X) = K< " )X
n - 1+1 /A
i=1 T 14 Xi=1 K (7 )
= Zuyg =\
Weight each training point based on distance to test
point

Boxcar kernel yields boxcar kernel :

local average K(x) = +1(2)
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power

Choice of kernel bandwidth h
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Kernel Regression as Weighted Least
— (LS e

Squares e ik

min > w;(f(X;) — Yi)? wi(X) = .
I =1 = R - i=1 h j

Weighted Least Squares i wis i

Kernel regression corresponds to locally constant estimator
obtained from (locally) weighted least squares

i.e.set f(X)=p (aconstant) /
-L'- z

I
*
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Kernel Regression as Weighted Least
Squares

set fiX)= Bx (a constant)

> min ) wi(By—Y;) w;i(X) = .
P 1=1 f ' = 2?21 K XhXZ)
constant
N— ~s" _
Te)
n n
975 = 2 Z wi(8—-Y;) =0 Notice that Z w; = 1

" N S-S LI
- S Wl 2 R X2 —
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Local Linear/Polynomial Regression
[ x

mm Z w@(f(X) Y;)? w;(X) = hX X,

Weighted Least Squares

Local Polynomial regression corresponds to locally polynomial
estimator obtained from (locally) weighted least squares

e set f(Xi) = fotB1(X;—X)+ 22 (X, X) - +5P(X Xy

(local polynomial of degree p around X)
’I’(Xi)" F Hﬁi): Tg,fﬁ.k)&"'ﬁ\
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Summary

* Non-parametric approaches

Four things make a nonparametric/memory/instance
based/lazy learner:

1. Adistance metric, dist(x,X))
Euclidean (and many more)

2. How many nearby neighbors/radius to look at?
/k, A/.h/

3. A weighting function (optional)
W based on kernel K -

4.  How to fit with the local points?
Average, Majority vote, Weighted average, Poly fit



Summary

* Parametric vs Nonparametric approaches

» Nonparametric models place very mild assumptions on
the data distribution and provide good models for
complex data

Parametric models rely on very strong (simplistic)
modeling assumptions

» Nonparametric models typically require storage and
computation of the order of entire data set size.

Parametric models, once fitted, are much more efficient
in terms of storage and computation.





