
How to learn a decision tree
• Top-down induction [ID3, C4.5, C5, …]
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6. Prune back tree to reduce overfitting
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C4.5

feature

feature

For “best” split of X, create new descendants of



24

Handling continuous features (C4.5)

Convert continuous features into discrete by setting a threshold.

What threshold to pick?

Search for best one as per information gain. Infinitely many??

Don’t need to search over more than ~ n (number of training 
data),e.g. say X1 takes values x1

(1), x1
(2), … , x1

(n) in the training set. 
Then possible thresholds are

[x1
(1) + x1

(2)]/2, [x1
(2) + x1

(3)]/2, … , [x1
(n-1) + x1

(n)]/2 



Poll

• What’s the maximum depth of a decision tree 
learnt using ID3?

• What’s the maximum depth of a decision tree 
learnt using C4.5?
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Decision Tree more generally…
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• Features can be discrete,
continuous or categorical

• Each internal node: test 
some set of features {Xi}

• Each branch from a node: 
selects a set of value for 
{Xi}

• Each leaf node: 
prediction for Y
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Expressiveness of Decision Trees

28

• Decision trees in general (without pruning) can express any 
function of the input features.

• E.g., for Boolean functions, truth table row → path to leaf:

• There is a decision tree which perfectly classifies a training set 
with one path to leaf for each example - overfitting

• But it won't generalize well to new examples - prefer to find 
more compact decision trees



Pruning the tree

• Many strategies for picking simpler trees:
– Pre-pruning

• Fixed depth (e.g. ID3)
• Fixed number of leaves

– Post-pruning
• Chi-square test

– Convert decision tree to a set of rules
– Eliminate variable values in rules which are independent of 

label (using chi-square test for independence)
– Simplify rule set by eliminating unnecessary rules

– Information Criteria: MDL(Minimum Description Length)
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• Penalize complex models by introducing cost
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log likelihood cost

regression
classification

penalize trees with more leaves

Information Criteria

CART – optimization can be solved by dynamic programming
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Example of 2-feature decision tree 
classifier

cs.uchicago.edu



How to assign label to each leaf

Classification – Majority vote Regression – ? 
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How to assign label to each leaf

Classification – Majority vote Regression – Constant/ 
Linear/Poly fit
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Regression trees
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Average (fit a constant ) using 
training data at the leaves

Num Children?

≥ 2 < 2



What you should know
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• Decision trees are one of the most popular data mining tools
• Simplicity of design
• Interpretability
• Ease of implementation
• Good performance in practice (for small dimensions)

• Information gain to select attributes (ID3, C4.5,…)
• Decision trees will overfit!!!

– Must use tricks to find “simple trees”, e.g.,
• Pre-Pruning: Fixed depth/Fixed number of leaves
• Post-Pruning: Chi-square test of independence
• Complexity Penalized/MDL model selection

• Can be used for classification, regression and density 
estimation too



k-NN classifier
Nonparametric kernel regression
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k-NN classifier

2

Sports

Science

Arts



k-NN classifier
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k-NN classifier (k=5)
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Sports

Science

Arts

Test document

What should we predict? … Average? Majority? Why?



k-NN classifier
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• Optimal Classifier:

• k-NN Classifier:

# total training pts of class y

# training pts of class y
amongst k NNs of x

P (x|y)

bPkNN (x|y)

bPkNN (x|y) = ky
ny



1-Nearest Neighbor (kNN) classifier 
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2-Nearest Neighbor (kNN) classifier 
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3-Nearest Neighbor (kNN) classifier 
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5-Nearest Neighbor (kNN) classifier 
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Science

Arts
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What is the best k?
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K = 1

Voronoi
Diagram

1-NN classifier decision boundary

As k increases, boundary becomes smoother (less jagged).



What is the best k?
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Approximation vs. Stability (aka Bias vs Variance) Tradeoff

• Larger K => predicted label is more stable (low variance) but 
potentially less accurate (high bias)

• Smaller K => predicted label can approximate best classifier 
well given enough data (low bias) but predict label is 
unstable (high variance)



Local Kernel Regression
• What is the temperature 

in the room?
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Average “Local” Average

at location x?

x



Local Kernel Regression

• Nonparametric estimator
• Nadaraya-Watson Kernel Estimator

Where

• Weight each training point based on distance to test 
point

• Boxcar kernel yields
local average
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h



Choice of kernel bandwidth h
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Image Source: 
Larry’s book – All 
of Nonparametric
Statistics

h=1 h=10

h=50 h=200

Too small

Too large
Just 
right

Too small



Kernel Regression as Weighted Least 
Squares
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Weighted Least Squares

Kernel regression corresponds to locally constant estimator 
obtained from (locally) weighted least squares 

i.e. set    f(Xi) = b (a constant)



Kernel Regression as Weighted Least 
Squares
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constant

Notice that

set   f(Xi) = b (a constant)



Local Linear/Polynomial Regression
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Weighted Least Squares

Local Polynomial regression corresponds to locally polynomial 
estimator obtained from (locally) weighted least squares 

i.e. set    

(local polynomial of degree p around X)



Summary

• Non-parametric approaches
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Four things make a nonparametric/memory/instance 
based/lazy learner:
1. A distance metric, dist(x,Xi)

Euclidean (and many more)  
2. How many nearby neighbors/radius to look at?

k, D/h
3. A weighting function (optional)

W based on kernel K
4. How to fit with the local points?

Average, Majority vote, Weighted average, Poly fit



Summary

• Parametric vs Nonparametric approaches
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Ø Nonparametric models place very mild assumptions on 
the data distribution and provide good models for 
complex data
Parametric models rely on very strong (simplistic) 
modeling assumptions

Ø Nonparametric models typically require storage and 
computation of the order of entire data set size. 
Parametric models, once fitted, are much more efficient 
in terms of storage and computation.




