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Why boost weak learners?

Goal: Classify movie review sentiment

“I'm a fan of TV movies in general and this was one of the good
ones”

“Long, boring. Never have | been so glad to see ending credits
roll”

“I don’t know why | like this movie, but | never get tired.”

* Easy to find “rules of thumb” that are better than random
chance.

E.g. If ‘good’ occurs in utterance, then predict ‘positive’

* Hard to find single highly accurate prediction rule.
e.g. “This movie is terrible but it has some good effects” 2



Fighting the bias-variance tradeoff

* Simple (a.k.a. weak) learners e.g., naive Bayes, logistic
regression, decision stumps (or shallow decision trees)
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Are bad ® - can’t solve hard learning problems - bié*

 Can we make weak learners good??? 3



Voting (Ensemble Methods)

* Instead of learning a single (weak) classifier, learn many weak
classifiers that are good at different parts of the input space

* Output class: (Weighted) vote of each classifier
. —m_ o . .
— Classifiers that are most “sure” will vote with more conviction
— Classifiers will be most “sure” about a particular part of the space
— On average, do better than single classifier!

H: X = Y (-1,1)

h1(X) NS h2(X)
- = h1(X)+h2(X)

H(X) = sign(Fat hi(X) &
—
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Voting (Ensemble Methods)

Instead of learning a single (weak) classifier, learn many weak
classifiers that are good at different parts of the input space

Output class: (Weighted) vote of each classifier
— Classifiers that are most “sure” will vote with more conviction
— Classifiers will be most “sure” about a particular part of the space
— On average, do better than single classifier!

But how do you ???
— force classifiers h, to learn about different parts of the input £~
space?
— weigh the votes of different classifiers? o, <—



Boosting [Schapire’89]

Idea: given a weak learner, run it multiple times on (reweighted)
training data, then let learned classifiers vote

On each iteration t:

— weight D.(i) for each training example i, based on how

incorrectly it was classified

— Learn a weak hypothesis — h, .~ Agpeihes = Jorwifier

— A weight for this hypothesis —

e

Final classifier: | H(X) = sign(Z ot ht(X))

Practically useful
Theoretically interesting



Learning from weighted data

* Consider a weighted dataset
— D(i) — weight of i th training example (x\y')
— Interpretations:

 jth training example counts as D(i) examples

* If | were to “resample” data, | would get more samples of “heavier”
data points

* Now, in all calculations, whenever used, i th training example
counts as D(i) “examples”

— e.g., in MLE redefine Count(Y=y) to be weighted count

Unweighted data Weights D(i)

Count(Y=y) = 5 1(Y i=y) Count(Y=y) = 5 D(i)1(Y '=y)
\i__=_1_’__,/ LR 7



AdaBoost [Freund & Schapire’95]

Given: (21,Y1),---, (Tm,Ym) where z; € X, y; € Y = {—1,+1}

Initialize Dy (z) = 1/m. Initially equal weights
Fort=1,...,T:

Train weak learner using distribution D;. Naive bayes, decision stump
Get weak classifier hy : X — R.
Update:

Dyyq1(i) = Dy (1) { e if y; = hy(x;)

et if y; & hi(x;)

. Increase weight
_ Di(i) exp(—anyibu(s) oo T

Zt yiht(xi)=-1<0

where Z; is a normalization factor



AdaBoost [Freund & Schapire’95]

Given: (21,Y1),---, (Tm,Ym) where z; € X, y; € Y = {—1,+1}

Initialize Dy (z) = 1/m. Initially equal weights
Fort=1,...,T:

e Trainweak learner using distribution D;. Naive bayes, decision stump

e Getweak classifier hy : X — R.

o Choose a; € R. Magic (+ve)

e Update: Increase weight

Diq1(i) = Dy (i) exp(—ayihe(zi) i wrong on pt i

‘Z'Dwu) A S Zy yiht(xi)=-1<0
where Z; is a normalization factor
m , Weights for all
Zt = Z; Dy (i) exp(—ayihi(x;)) pts must sum to 1
V) z Dt+1(i) =1

;



AdaBoost [Freund & Schapire’95]

Given: (21,Y1),---, (Tm,Ym) where z; € X, y; € Y = {—1,+1}
Initialize Dy (7)) = 1/m.
Fort=1,...,T:

4

Initially equal weights

e Trainweak learner using distribution D;. Naive bayes, decision stump
e Getweak classifier hy : X — R.
o Choose a; € R. Magic (+ve)
e Update: . Increase weight
Diis (Z) _ Dt(z) exp(_atyz'ht(xi)) if wrong on pti
Z yi ht(xi) =-1< 0

where Z; is a normalization factor

- (Fae)

Output the final classifier:




What «, to choose for hypothesis A,?
W)=- Gqnl %ﬁf:f_\}_))

Weight Update Rule: Dy, (i) = 2t eXp(gatyiht(xi)) v
Q:O = ’(\'5” \/ t
Gzl D e 1 1 — e ire’
t o = = In [Freund & Schapire’95]
@;a\ 0 2 €t

é,(,:: 0,5' = o(-t \/ 4-'

Weighted training error

€t — ZNDt(z) [ht(XZ) # yz] — Z Dt(z>5(ht(xz) = yz)

=1 —

Does ht get it" point wrong

= 0 if h, perfectly classifies all weighted data pts o =
g = 1if hy perfectly wrong => -h, perfectly right oy = -
=0.5 o = 0
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Boosting Example (Decision Stumps)
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Boosting Example (Decision Stumps)
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Boosting Example (Decision Stumps)
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Boosting Example (Decision Stumps)
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Boosting Example (Decision Stumps)

£ . £.(% L Bl

+0.65

16



Analysis for Boosting

v

* Choice of o‘z{and hypothesis /4, obtained by coordinate descent on exp
loss (convex upper bound on 0/1 loss)

0/1 loss

exp loss

f(z) =) othi(x); H(z) = sign(f(z))
t

1 & 1
— > B(H(z) £ yi) <= exp(—y; f(x;)
mi=1 mi=1 ~
5 0/1 loss, exp loss
|-
doef b

Yjw= y gx,j\e&x\
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Analysis for Boosting

Analysis reveals:

e If each weak learner 4, is slightly better than random guessing (g,< 0. 5)
then training error of AdaBoost decays exponentially fast in number of

rounds T.
1 C 2
o L SHGE) #u) s e (23 1/2-)
i=1 I=1

"

Training Error

What about test error?
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Boosting results — Digit recognition

[Schapire, 1989]

Test Error

Training Error
10 100 1000
# rounds

* Boosting often,
— Robust to overfitting
— Test set error decreases even after training error is zero

» |f classes are well-separated, subsequent weak learners agree and hence more
rounds does not necessarily imply that final Classifier is getting more complex.
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AdaBoost and AdaBoost. MH on Train (left) and Test (right)

data from Irvine repository. [Schapire and Singer, ML 1999]
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Boosting can overfit if classes not well separated (high label noise) or weak

learners are too complex. 20





