Encemble Methods **Boosting** [Schapire'89]

- On each iteration *t*:
 - Learn a weak hypothesis $-h_{t}$
 - A weight for this hypothesis α_t
- $\chi_{t} = \frac{1}{2} \ln \frac{1-\epsilon_{t}}{\epsilon_{t}}$ - weight $D_t(i)$ for each training example i, based on how incorrectly it was classified $D_{tri}(i) \leftarrow D_{tli}(e)$
- Final classifier:

- **Practically useful**
- **Theoretically interesting**

++++/

Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss

$$\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i)))$$

$$f(x) = w_0 + \sum_j w_j x_j$$

Boosting minimizes similar loss function!!

Boosting and Logistic Regression

Logistic regression:

- Minimize log loss $\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i)))$
- Define

$$f(x) = \sum_{j} w_{j}x_{j}$$

where x_{j} predefined
features
(linear classifier)

• Jointly optimize over all weights *wo, w1, w2...*

Boosting:

- $\frac{\text{Minimize exp loss}}{\sum_{i=1}^{m} \exp(-y_i f(x_i))}$
- Define

$$f(x) = \sum_{t} \alpha_t h_t(x)$$

where $h_t(x)$ defined dynamically to fit data (not a linear classifier)

- Weights α_t learned per iteration t incrementally

Hard & Soft Decision

Weighted average of weak learners

$$f(x) = \sum_{t} \alpha_t h_t(x)$$

Hard Decision/Predicted label: H(x) = sign(f(x))

Soft Decision: (based on analogy with logistic regression)

$$P(Y = 1|X) = \frac{1}{1 + \exp(f(x))}$$

Matlab example decision tree

load ionosphere % UCI dataset % 34 features, 351 samples % binary classification rng(100)

%Default MinLeafSize = 1 tc = fitctree(X,Y); cvmodel = crossval(tc); view(cvmodel.Trained{1},'Mode','graph') kfoldLoss(cvmodel)

Matlab example – decision tree

load ionosphere
% UCI dataset
% 34 features, 351 samples
% binary classification
rng(100)

%Default MinLeafSize = 1
tc = fitctree(X,Y, 'MinLeafSize',2);
cvmodel = crossval(tc);
view(cvmodel.Trained{1},'Mode','graph')
kfoldLoss(cvmodel)

Matlab example – decision tree

load ionosphere
% UCI dataset
% 34 features, 351 samples
% binary classification
rng(100)

%Default MinLeafSize = 1
tc = fitctree(X,Y, 'MinLeafSize',10);
cvmodel = crossval(tc);
view(cvmodel.Trained{1},'Mode','graph')
kfoldLoss(cvmodel)

7

Matlab example – decision trees

Matlab example - boosting

- % UCI dataset
- % 34 features, 351 samples
- % binary classification
- load ionosphere;
- rng(2); % For reproducibility
- ClassTreeEns = fitensemble(X,Y,'AdaBoostM1',100,'Tree');
- rsLoss = resubLoss(ClassTreeEns,'Mode','Cumulative');
- plot(rsLoss,'r');
- hold on
- ClassTreeEns = fitensemble(X,Y,'AdaBoostM1',100,'Tree',...
- 'Holdout',0.5);
- genError = kfoldLoss(ClassTreeEns,'Mode','Cumulative');
- plot(genError,'b');
- xlabel('Number of Learning Cycles');
- legend('Training err', 'Test err')

Matlab example - boosting

Bagging (Bootstrap aggregating)

[Breiman, 1996]

Related approach to combining classifiers:

- 1. Run independent weak learners on subsampled data (sample with replacement) from the training set
- 2. Average/vote over weak hypotheses

Bagging vs. Boosting

Resamples data points

Weight of each classifier is the same _

Only variance reduction

Can be trained in parallel

Reweights data points (modifies their distribution)

Weight is dependent on classifier's accuracy -

Both bias and variance reduced – learning rule becomes more complex with iterations

Trained sequentially

Random Forest

Related approach to combining decision trees:

- Train decision trees on subsampled data (sample with replacement) from the training set + using **feature bagging** (random subset of features considered at each node)
- 2. Average/vote over decision trees

Random forest	vs. Boosted decision trees		
Resamples data points	Reweights data points (modifies their distribution)		
Weight of each classifier is the same	Weight is dependent on classifier's accuracy		
Only variance reduction	Both bias and variance reduced – learning rule becomes more complex with iterations		
Typically complex decision trees	Typically uses decision stumps ←		
Can be trained in parallel	Trained sequentially 12		

Boosting Summary

- Combine weak classifiers to obtain strong classifier
 - Weak classifier slightly better than random on training data
 - Resulting very strong classifier can eventually provide zero training error
- AdaBoost algorithm 🦯 🖌 🗸 🗸 🏸
- Boosting v. Logistic Regression
 - Similar loss functions
 - Single optimization (LR) v. Incrementally improving classification (B)
- Most popular application of Boosting:
 - Boosted decision stumps!
 - Very simple to implement, very effective classifier

Comparison chart (classification)

Algorithm	Generative/ Assump Discriminative	tions Decision boundary	Loss function	Training
Naïve Bayes	G P(X,Y) = P(X Y) = $\Pi P(X)$	p(Y) lineor (xily)ply) or qued.	Gaucian max p(x14)) Likelihad	closed form/ gradient ascent
Logistic Regression	$P(Y X) = \frac{1}{1+er}$		or MAP max condition likelihood/	al gradient
SVM Kernel SVM		- linear non-linea	kinge	log descer qued prog. (duel
Neural Networks	D	non-line	is l2/cross-en	rery SGD 'Adam'
k-Nearest Neighbors	hon- paramet	n NC	plug-in Bayes	look up
Decision Tree	paramer	D.	Infgain - pendized by -	SD31C45 CART
Boosting	' J	ti	e×p	Adabrost

Model selection

Aarti Singh

Machine Learning 10-701 Mar 15, 2023

Training vs. Test Error

Examples of Model Spaces

Model Spaces with varying complexity:

Nearest-Neighbor classifiers with increasing neighborhood sizes
 k = 1,2,3,...

Large neighborhood => l_{00} complexity

- Decision Trees with increasing depth k or with k leaves Higher depth/ More # leaves => fight complexity
- Neural Networks with increasing layers or nodes per layer More layers/Nodes per layer => للمنهد complexity
- MAP estimates with stronger priors (larger hyper-parameters β_H , β_T for Beta distribution or smaller variance for Gaussian prior) => complexity

How can we select the right complexity model?

Training vs. Test Error

Bias-Variance Tradeoff

 Why does test/validation error go down then up with increasing model complexity?

Mean square test error = Variance + Bias² + Irreducible error

Judging Test error

• Training error of a classifier f

$$\frac{1}{n}\sum_{i=1}^{n} \mathbf{1}_{f(X_i)\neq Y_i}$$

Training Data $\{X_i, Y_i\}_{i=1}^n$

• What about test error?

Can't compute it.

 How can we know classifier is not overfitting? Hold-out or Cross-validation

Hold-out method

Can judge test error by using an independent sample of data.

Hold - out procedure:

n data points available $D \equiv \{X_i, Y_i\}_{i=1}^n$

1) Split into two sets (randomly and preserving label proportion): Training dataset Validation/Hold-out dataset

 $D_T = \{X_i, Y_i\}_{i=1}^m \qquad D_V = \{X_i, Y_i\}_{i=m+1}^n$

often m = n/2

2) Train classifier on D_T . Report error on validation dataset D_V . Overfitting if validation error is much larger than training error

Hold-out method

Drawbacks:

- May not have enough data to afford setting one subset aside for getting a sense of generalization abilities
- Validation error may be misleading (bad estimate of test error) if we get an "unfortunate" split

Limitations of hold-out can be overcome by a family of sub-sampling methods at the expense of more computation.