Encemble Methods **Boosting [Schapire'89]**

- Idea: given a weak learner, run it multiple times on (reweighted) training data, then let learned classifiers vote
- On each iteration *t*:
	- $-$ Learn a weak hypothesis h_t
	- A weight for this hypothesis α_t
- Let naining we
Let the det of the $-$ weight D_t(i) for each training example i, based on how incorrectly it was classified
- Final classifier:
- $H(X) = sign(\sum \alpha_t h_t(X))$
- **Practically useful**
- **Theoretically interesting 1 and 1**

 $-77/7$

Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss

$$
\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i)))
$$

$$
f(x) = w_0 + \sum_j w_j x_j
$$

Boosting minimizes similar loss function!!

Boosting and Logistic Regression

Logistic regression:

- Minimize log loss m $\sum \ln(1 + \exp(-y_i f(x_i)))$ $i=1$
- Define

$$
f(x) = \sum_{j} w_j x_j
$$

where x_j predefined
features
(linear classifier)

• Jointly optimize over all weights *w0, w1, w2…*

Boosting:

- Minimize exp loss \sum exp($-y_i f(x_i)$) $i=1$
- **Define**

$$
f(x) = \sum_{t} \alpha_t h_t(x)
$$

where $h_t(x)$ defined dynamically to fit data (not a linear classifier)

Weights α_t learned per iteration t incrementally

Hard & Soft Decision

Weighted average of weak learners

$$
f(x) = \sum_{t} \alpha_t h_t(x)
$$

 $H(x) = sign(f(x))$ Hard Decision/Predicted label:

Soft Decision: (based on analogy with logistic regression)

$$
P(Y = 1|X) = \frac{1}{1 + \exp(f(x))}
$$

Matlab example – decision tree

load ionosphere % UCI dataset % 34 features, 351 samples % binary classification rng(100)

%Default MinLeafSize = 1 $tc = fitteree(X,Y);$ c cvmodel = c rossval(tc); view(cvmodel.Trained{1},'Mode','graph') $k\textsf{foldLoss}(\textsf{cwndel}) \quad \textcolor{red}{\bullet} \quad \textcolor{$

Matlab example – decision tree

load ionosphere % UCI dataset % 34 features, 351 samples % binary classification rng(100)

%Default MinLeafSize = 1 $tc = fitteree(X, Y, 'MinLeafSize', 2);$ cvmodel = crossval(tc); view(cvmodel.Trained{1},'Mode','graph') $k\textsf{foldLoss}(\textsf{cwndel}) \quad \overline{\quad}$

Matlab example – decision tree

load ionosphere % UCI dataset % 34 features, 351 samples % binary classification rng(100)

%Default MinLeafSize = 1 $tc = fitteree(X, Y, 'MinLeafSize', 10);$ cvmodel = crossval(tc); view(cvmodel.Trained{1},'Mode','graph') $k\textsf{foldLoss}(\textsf{cwndel}) \quad \overline{a} \quad \overline{b} \quad \overline{c} \quad \overline{d} \quad \over$

Matlab example – decision trees

Matlab example - boosting

- % UCI dataset
- % 34 features, 351 samples
- % binary classification
- load ionosphere;
- rng(2); % For reproducibility
- ClassTreeEns = fitensemble(X,Y,'AdaBoostM1',100,'Tree');
- rsLoss = resubLoss(ClassTreeEns,'Mode','Cumulative');
- plot(rsLoss,'r');
- hold on
- ClassTreeEns = fitensemble(X,Y,'AdaBoostM1',100,'Tree',...
- 'Holdout',0.5);
- genError = kfoldLoss(ClassTreeEns,'Mode','Cumulative');
- plot(genError,'b');
- xlabel('Number of Learning Cycles');
- legend('Training err', 'Test err')

Matlab example - boosting

Bagging (Bootstrap aggregating)

[Breiman, 1996]

Related approach to combining classifiers:

- 1. Run independent weak learners on subsampled data (sample with replacement) from the training set
- 2. Average/vote over weak hypotheses

Bagging vs. Boosting

Weight of each classifier **Weight is dependent on** is the same \sim classifier's accuracy \sim

Can be trained in parallel Trained sequentially

Resamples data points **Reweights data points (modifies their** distribution)

Only variance reduction **Both bias and variance reduced** – learning rule becomes more complex with iterations

Random Forest

Related approach to combining decision trees:

- 1. Train decision trees on subsampled data (sample with replacement) from the training set + using **feature bagging** (random subset of features considered at each node)
- 2. Average/vote over decision trees

Boosting Summary

- Combine weak classifiers to obtain strong classifier
	- Weak classifier slightly better than random on training data
	- Resulting very strong classifier can eventually provide zero training error
- AdaBoost algorithm \angle κ , $\mathcal{D}_{\mathbf{t}}$
- Boosting v. Logistic Regression
	- Similar loss functions
	- Single optimization (LR) v. Incrementally improving classification (B)
- Most popular application of Boosting:
	- Boosted decision stumps!
	- Very simple to implement, very effective classifier

Comparison chart (classification)

Model selection

Aarti Singh

Machine Learning 10-701 Mar 15, 2023

Training vs. Test Error

Examples of Model Spaces

Model Spaces with varying complexity:

• Nearest-Neighbor classifiers with increasing neighborhood sizes $k = 1, 2, 3, ...$

Large neighborhood => $\int_{\partial \omega}$ complexity

- Decision Trees with increasing depth k or with k leaves Higher depth/ More # leaves \Rightarrow $\frac{f_{\text{w}}f_{\text{w}}}{f_{\text{w}}}$ complexity
- Neural Networks with increasing layers or nodes per layer More layers/Nodes per layer \Rightarrow high complexity
- MAP estimates with stronger priors (larger hyper-parameters β_H , β_T for Beta distribution or smaller variance for Gaussian prior) => complexity

How can we select the right complexity model ?

Training vs. Test Error

$E[f_{n}] \approx f^{*}$
 $f_{n} \approx E[f_{n}]$ **Bias-Variance Tradeoff** F_{n} • Why does test/validation error go down then up with increasing model complexity? **Low Variance High Variance** Two sources of error: Low Bias e.g. Regression $|\frac{1}{\sqrt{2}}$ grownd truth
 $|\frac{1}{\sqrt{2}}$ – f^{*}|² Bias High Bias **Variance** $E[|f_n - E[f_n]|^2]$ 5

Bias-Variance Tradeoff

• Why does test/validation error go down then up with Bayes even increasing model complexity?

Mean square test error = Variance + $Bias^2$ + Irreducible error

Judging Test error

• Training error of a classifier f

$$
\frac{1}{n}\sum_{i=1}^{n}1_{f(X_i)\neq Y_i}
$$

Training Data $1_f(X_i) \neq Y_i$ **iraining Data**
 $\{X_i, Y_i\}_{i=1}^n$

• What about test error?

Can't compute it.

• How can we know classifier is not overfitting? Hold-out or Cross-validation

Hold-out method

Can judge test error by using an independent sample of data.

Hold – out procedure:

n data points available $D \equiv \{X_i, Y_i\}_{i=1}^n$

1) Split into two sets (randomly and preserving label proportion): Training dataset Validation/Hold-out dataset

 $D_T = \{X_i, Y_i\}_{i=1}^m$ $D_V = \{X_i, Y_i\}_{i=m+1}^n$

often $m = n/2$

2) Train classifier on D_T . Report error on validation dataset D_V . Overfitting if validation error is much larger than training error

Hold-out method

Drawbacks:

- May not have enough data to afford setting one subset aside for getting a sense of generalization abilities
- Validation error may be misleading (bad estimate of test error) if we get an "unfortunate" split

Limitations of hold-out can be overcome by a family of sub-sampling methods at the expense of more computation.