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Learning Theory

* We have explored many ways of learning from
data

 But...

— Can we certify how good is our classifier, really?
— How much data do | need to make it “good enough”?



PAC Learnability
T Prtoly Arpevmately Gwed (65)
* True function space, F

* Model space, H

Fis PAC Learnable by a learner using H if

there exists a learning algorithm s.t. for all functions in
F, for all gﬂributions over inputs, forall0<g, 0 < 1,

fl%
with probability >1—8, the algorithm outputs a model
h € Hs.t. errorye(h) S & sppxnolely wrd

in time and samples that are polynomial in 1/¢, 1/8. «
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A simple setting

e Classification

— mi.i.d. data points

— Finite number of possible classifiers in model class
(e.g., dec. trees of depth d)

 Lets consider that a learner finds a classifier h
that gets zero error in training

— error.i,(h) =0

 What is the probability that h has more than ¢
true (= test) error?
— errory(h) 2 ¢

4
Even if h makes zero errors in training data, may make errors in test



How likely is a bad classifier to get m

data points right?
f(htx) £Y)

* Consider a bad classifier hi.e. error,.(h) 2 €

* Probability that h gets one data point right
<1l-¢

* Probability that h gets m data points right

<(1-¢g)m
—



How likely is a learner to pick a bad
classifier?

e Usually there are many (say k) bad classifiers in model class

hy, h,, ..., hy s.t. error,(h;))2€ i=1, ..,k

=

* Probability that learner picks a bad classifier = Probability
that some bad classifier gets O training error

+P(L
Prob(h, gets O training error OR P(A u@) 2 P >
h, gets O training error OR ... OR -
h, gets O training error :
8 & ) Union
< Prob(h, gets O training error) + bound
Prob(h, gets O training error) + ... + Loose but
works

Prob(h, gets O training error)
6
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How likely is a learner to pick a bad
classifier?

e Usually there are many many (say k) bad classifiers in the
class

hy, h,, ..., hy s.t. error,(h)2€ i=1, .,k

* Probability that learner picks a bad classifier

/ VA

< k(1-¢)™ < [H| (1-g)m< |H]| e&m
I Cp————
~Ls Sjze of model class
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PAC (Probably Approximately Correct)
bound

* Theorem [Haussler’88]: Model class H finite, dataset
D with mi.i.d. samples, 0 < € < 1: for any learned
classifier h that gets O training error:

—_—

P(errorgye(h) > ¢€) < |I}’|€_T’n€§ 0

™

* Equivalently, with probability > 1 — 0
errorrqye(h) <e
=

Important: PAC bound holds for all h with 0 training error, but
doesn’t guarantee that algorithm finds best h!!!
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Using a PAC bound

golh 0oy iy |[H|em™ < 0
ZX’ZOZ et u P“L?.o" )
* Given € and o, yields sample complexity
= z —_—
1
#training data, 1, > ln_._|_[.{| +1In3g

=z € ~

QS

 Given m and 9, yields error bound

In|H|+1Int -~
error, ¢ > W+ ing
m
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Assume m is the minimum number of training examples sufficient
to guarantee that with probability 1 — 6 a consistent learner using
model class H will output a classifier with true error at worst .

Then a second learner that uses model space H’ will require 2m
training examples (to make the same guarantee) if |[H' | =2|H]|.

A. True B. False

If we double the number of training examples to 2m, the error
bound € will be halved.

C. True D. False



Limitations of Haussler’s bound

» Only consider classifiers with 0 training error

h such that zero error in training, error,,,(h) =0

» Dependence on size of model class |H|

———

In|H|+ In 3
m >

€

what if |H| too big or H is continuous (e.g. linear
classifiers)? -
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What if our classifier does not have
zero error on the training data?

* Alearner with zero training errors may make
mistakes in test set

* What about a learner with error,,,;,(h) # 0 in training
set?

* The error of a classifier is like estimating the
parameter of a coin!
error,, .(h) := P(h(X) 2Y) = P(H=1)=:0

-

errofiy,in(h) = — E 1y x 2y, = — E Z; =: 0 de)-®
> train : h(X:)AY; 5(8

1
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Hoeffding’s bound for a single

classifier
* Consider mi.i.d. flips xy,...,x.,, where x. € {0,1} of
a coin with parameter 0. For O<e<1: gussle
- me
2

m .
(2
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Hoeffding’s bound for a single
classifier

* Consider mi.i.d. flips xy,...,x.,, where x. € {0,1} of
a coin with parameter 0. For O<e<1:

1
P(i‘m?’”i

2

* For a single classifier h

L 2
P (Ierrortrue(h ) — errortrain(h )|2 E) S 26 2me
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Hoeffding’s bound for |H| classifiers

* For each classifier h:
2
P (errorypye(hi) — €rroripqin(hi)|> €) < 26_2m€

 What if we are comparing |H| classifiers?
—_—

Union bound

e Theorem: Model class H finite, dataset D with mi.i.d.
samples, 0 < € < 1: for any learned classifier h € H:

P (erroriyue(h) — erroryain(h)| > €) < 2|H[e > < §

Important: PAC bound holds for all h, but doesn’t gu'é:r’intee that ..
algorithm finds best h!!!



Summary of PAC bounds for finite
model classes

With probability > 1-0,
1) Forall h € Hs.t. error,,(h) =0,

error,,.(h) < & = In |H|+1In § Haussler’s bound

m

2) Forallh e H
In|H|-|—In% )

errory,(h) - error,y(h)| < & J
J/ 2m
/ —

Hoeffding’s bound
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PAC bound and Bias-Variance tradeoff

2
P qerrortrue(h) — errortrain(h)l > E) < Q‘H’€_2m€ < 0

* Equivalently, with probability > 1 —§

In|H|+ In2
erroripye(h) < erroty.qin(h) + \ >
* Fixed m Aot
S
Model class g
———
complex small large mads) 5
simple large small




What about the size of the model

class? 2
2|H|e 2™ < §
 Sample complexity

* How to measure the complexity of a model class?

— E.g. decision trees:
trees with depth k
trees with k leaves
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Number of decision trees of depth k

. - 1 2
Rc'ecurswe.solutlon.. Feaures m > —— >0 (In |H| 4+ In 5)
Given n binary attributes = —

H, = Number of binary decision trees of depth k

Hy= 2

m = (#choices of root attribute)
= *(# possible left subtrees)

*(# possible right subtrees) =n*H,;* Hk .
Write L, = log, H, (4 (,3 — bey,n+ Zlﬂj, Hi-
Ly=1 Cpe

L, =log, n+ 2L, _,=log, n+ 2(log, n + 2L,,)

—  ——

=log, n + 2log, n + 2%log, n + ... +2%(log, n + 2L,)
k
So L, =(2%1)(1+log, n) +1 AT Lot 19
k ( )( 82 ) = H,'_ 2 , M ya



PAC bound for decision trees of depth k

In 2 )
m> 25 (25~ DA +1og2m) + 1+ 095
/

e Badl!!!
— Number of points is exponential in depth k!

* But, for m data points, decision tree can’t get too big...

Number of leaves never more than number data points, so
we are over-counting a lot!
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Number of decision trees with k leaves
mZ%(IMHH—Iﬂ%)

_~ 2€
H, = Number of binary decision trees with k leaves
H, =2
H, = (#choices of root attributg) *
[(# left subtrees wth 1 leaf)*(# right subtrees wth k-1 leaves)
+ (# left subtrees wth 2 leaves)*(# right subtrees wth k-2 leaves)

+ ...
+ (# left subtrees wth k-1 leaves)™*(# right subtrees wth 1 leaf)]

k—1
Hi =n Z H;Hy_; =nk1C, (C,., : Catalan Number)
1=1 )

_

Loose bound (using Sterling’s approximation):

Hk S nk 22k—1 =) p~ o~ 1k

—1
21
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Number of decision trees

1 2
e With k leaves mZ o3 ('” [H]+ '”5)
logy Hy < (k—1)logyn + 2k — 1 linear in k

number of points m is linear in #leaves

* With depth k

log, H, = (2%1)(1+log, n) +1  exponential in k

number of points m is exponential in depth
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What did we learn from decision trees?

 Moral of the story:

Complexity of learning not measured in terms of size
of model space, but in maximum number of points
that can be classified using a classifier from this model

space

e _
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Rademacher Complexity

gae  medd cpace
* Instead of allpessibletabelings, measure complexity

by how accurately a model space can match a
random labeling of the data.

For each data point i, draw random label - ,‘ +
e ' o
o] s.t. P(o,=+1) =% =P(0,=-1) ,
—_ ' +
Then empirical Rademacher complexity of H is : *

fA%m(H)ZI;E;a Sup( Zaz >

heH 1=1—"—
e
Max correlation poss:ble with random labels
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Rademacher Bm;gj%s*//
'h W\ ‘u'/‘g
* With probability > 1-6, Z ”

e

e Z -
~ log(2/0
errortrue(h) S errortrain(h) + Rm(H) T 3\/ Og( / )
_ — — m

where empirical Rademacher complexity of H

}A%m(H):EJ Sup( ZO’Z > %

he H

is purely data-dependent.
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Finite model class

 Rademacher complexity can be upper bounded in
terms of model class size |H|:

~ 2In|H
Rm<H>g\/ n|H|

m

 Often Rademacher bounds are significantly better,
e.g. ...
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Linear models with bounded norm

* Consider h(X)) = <w, X; > with fixed ||w||, | X:]| < R

—

ey

. 1 <& |
Rm H :EJ Su — O'Z'h Xz
(H) = E, | sup (mz < >>_ _

I H - o~
R . [
S

Complexity increases with number of parameters d and
norm of weights
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Summary of PAC bounds

With probability > 1-0,
1) forallh € Hs.t. er%(/hliO,

In|H|+In Finite
<g= 0
errorye(h) < & m _ hypothesis
space

2) forallh e H, ;
In|H |+ In <
|error(h) —error.i,(h)| <€ =J n%:: s _

’ Ve

3)Forallh e H, Infinite hypothesis space

|errortrue(h) — err-Ortrain(h) | Sg= fim(H) + 3\/10g(2/5)

m
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