Reinforcement Learning |

Aarti Singh

Machine Learning 10-701
Apr 3, 2023

Slides courtesy: Henry Chai, Eric Xing

ACHI

Learning Tasks

o UINOED
* Supervised learning - D = {(x(‘),y(l))}livzl o 5t

* Regression -y(i) eER
- Classification - y(i) e{1,..,C}

-

/i g, gabwakion
* Unsupervised learning - D = {x(‘)} ~ pl* (<) AU"’E
=1 /MML aon
* Clustering
* Dimensionality reduction
secuenbol
- Reinforcement learning - D = {S(t) a®, r(t)} a'u«e‘

J =
SthS a(km \ rewarks

RL setup

&ction, at/

Environment —

Agent chooses actions which can depend on past

Environment can change state with each action

Reward (Output) depends on (Inputs) action and state of environment
— _’—\f“"

Goal: Maximize total reward

Differences from supervised learning

/Rewa rd,N

\Action, at/

Environment

o Maximize reward (rather than learn reward)
o Inputs are not iid — state & action depends on past hed)
4

o Can control some inputs - actions LSW “

g o e https://www.cmu.edu/news/stories/archives/2017
019/06/ar september/snakebot-mexico.html

FO9% 64 4,

https://twitter.com/alphagomovie

https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/
https://www.wired.com/2012/02/high-speed-trading/
https://twitter.com/alphagomovie
https://www.cmu.edu/news/stories/archives/2017/september/snakebot-mexico.html
https://www.cmu.edu/news/stories/archives/2017/september/snakebot-mexico.html

RL setup

- State space, ;S‘

* Action space, ail

- Reward function

» Stochastic, p(r | s, a)

* Deterministic, R: ¢§‘ x_c/l - IiR T (S, &)
* Transition function

» Stochastic, 'p(s_‘_’ | s, Q)

* Deterministic, 0: § X A = §

* Reward and transition functions can be known or unknown

RL setup

i (can be Shochaab)
* Policy m:8 - A determinibe

* Specifies an action to take in every state

: g
- Value function, VZ: § - R v (s>
- Measures the expected total reward of starting in

some state s and executing policy i, i.e., in every

state, taking the action that m returns

RL example - gridworld

& = all empty squares in the
grid

A = {up, down, left, right}

Deterministic transitions

Rewards of +1 and -1 for
entering the labelled squares

Terminate after receiving either
reward .

RL example - gridworld

S = all empty squares in the
grid

A = {up, down, left, right}

Deterministic transitions

Rewards of +1 and -1 for
entering the labelled squares

Poll: Is this policy optimal?

Terminate after receiving either
reward ;

RL example - gridworld

S = all empty squares in the
grid

A = {up, down, left, right}

Deterministic transitions

Rewards of +1 and -1 for
entering the labelled squares
Optimal policy given a reward of

Terminate after receiving either -2 per step
—

reward
10

RL example - gridworld

S = all empty squares in the
grid

A = {up, down, left, right}

Deterministic transitions

Rewards of +1 and -1 for
entering the labelled squares

Optimal policy given a reward of

Terminate after receiving either -0.1 per step
—

reward
11

Reward hacking

Alhub.org

t
Desired behavior Hacking the reward function

[Amodei-Clark’16]

/s pes M| Wowou> IDEHTD

12

Markov Decision Process

1. Startin some initial state s

—

2. For time step t: :
g Syochaate g
a. Agent observes state s; a~ T
b. Agent takes action a; = ZT(St) Deterministic policy

c. Agentreceivesrewardry ~ p(r | s¢, ap) €

d. Agent transitions to state s;,1 ~ p(s' | s¢, az)

* MDPs make the Markov assumption: the reward and next

state only depend on the current state and action.

13

Discounted Reward

ool

Total reward is z Yire =rg+yr +yin +yv3in 4+ .

=200 -

where 0 < y < 1 is some discount factor for future rewards

— @

Why discount?

- Mathematically tractable — total reward doesn’t explode

1+1+1+..=0c0 but 1+0.8%1+(0.8)**1+..=5

* Risk aversion under uncertainty

* Actions don’t have lasting impact

14

Key challenges

The algorithm has to gather its own training data

The outcome of taking some action is often stochastic or

unknown until after the fact

Decisions can have a delayed effect on future outcomes

(exploration-exploitation tradeoff)

explore decisions whose reward is uncertain

exploit decisions which give high reward

15

MDP example: Multi-armed bandits

e —

Single state: |[S| =1

Three actions: A = {1, 2, 3}
Deterministic transitions
Rewards are stochastic

16

MDP example: Multi-armed bandits

1 2

1 0

1
0
1 3
2

17

RL: objective function

o
* Find a policy m* = argmax V™(s) Vs € S weo)

T —

<A

- V™ (s) = E[discounted total reward of starting in state
(4
s and executing policy forever]

= [E [R(SO = S,T[(SO))

+ yR(s;l‘, 73&31)) + ZZR(fE'nng)) + -]

00 J——v
= z VE|R(s¢, m(sy))]
t=0 I

where 0 < y < 1 is some discount factor for future rewards
18

Value function: example

1
-2 (@ 7

(2 if entering state 0/(safety)
R(s,a) = { 3 ?f enter¥ng state 5 ’(ﬁeld goal)

7 if entering state 6 (touch down)
_ 0 otherwise

19

Value function: example

G

G

(_2if entering state 0 (safety)

3 if entering state 5 (field goal)
7 if entering state 6 (touch down)
_ 0 otherwise -

0+0°9%2 040 93

T 3

~

—2 | =18 || 2.7 3 0

£

20

Value function: example

G
Ol=[=]==C

(_2if entering state 0 (safety)
R(s,a) = 4 3 ¥f enter}ng state 5 (field goal)

7 if entering state 6 (touch down)
_ 0 otherwise

— 3
V=09 gxo0, wod" gx04

™ T ™
21

(2 1 4
0 5.10l5.67 6.3 7 0
Vs

Value function — deterministic reward

— =

r(g’/s,a)

. V”(S) = [E[discounted total reward of starting in state s and

—= ElFRY) -
executing policy i forever]

s ?(ﬂ)

= R(so T[(SO)) -+ yR(51 n(sl)) -+ yzR(sz n(sz)) + - | SO = 5]
- S S et «C

' k(‘l J)){- -
{2(5 n(s)) + y[E R(51 n(sl)) +)/R(SZ n(sz)) .| Sog = 5]

= R(s,1()) + 7 s c5p(s1 | n(s))ER(sl (1))
NI I-SS——
+YE[R(sz,7(s2)) + - | 51])

YATEY)

VT(s) = R(S,T[(S)) +y z p(51 | s,n(s))V”(sl) Bellman equations

S]_ES

22

|
Optimal value function and policy

* Optimal value function:
—_— —

v (s) = max [R(s,a) + y ng(s |s,a)V* (s’)] 7 e

- System of |§| equations and |§| variables — nonlinear!
—_—

* Optimal policy:

n*(s) = argmax R(s,a) + y p(s'|s, a)V (s") ./
aeA

-— s'es
R/_/ N\
Y
Immediate Expected (Discounted)
reward Future reward

—

* Insight: if you know the optimal value function, you can solve

for the optimal policy! 23

Value iteration

* Inputs: R(s,a), p(s’ | s,a),0 <y <1

e ‘ ~—

+ Initialize V(9(s) = 0V s € S (or randomly) and set t = 0

—

- While not converged, do:
*Forsesd

V() « max [R(s,a) +y 2 p(s' |5,V (s")]

—‘: s'eS)
S, a
‘t=t+1 Qs a)
‘Fors €S

m*(s) < argmax [R(s,a) + ¥ X s0(S' |5, a)V(t)(s’)]
aEA —

* Return t*
24

