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Learning Tasks

o UINOED
* Supervised learning - D = {(x(‘),y(l))}livzl o 5t

* Regression -y(i) eER
- Classification - y(i) e{1,..,C}

-

/i g, gabwakion
* Unsupervised learning - D = {x(‘)} ~ pl* (<) AU"’E
=1 /MML aon
* Clustering
* Dimensionality reduction
secuenbol
- Reinforcement learning - D = {S(t) a®, r(t)} a'u«e‘
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RL setup

&ction, at/

Environment —

Agent chooses actions which can depend on past

Environment can change state with each action

Reward (Output) depends on (Inputs) action and state of environment
— \_’—\f“"

Goal: Maximize total reward



Differences from supervised learning

/Rewa rd,N

\Action, at/

Environment

o Maximize reward (rather than learn reward)
o Inputs are not iid — state & action depends on past hed )
4

o Can control some inputs - actions LSW “



g o e https://www.cmu.edu/news/stories/archives/2017
019/06/ar september/snakebot-mexico.html
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https://twitter.com/alphagomovie



https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/
https://www.wired.com/2012/02/high-speed-trading/
https://twitter.com/alphagomovie
https://www.cmu.edu/news/stories/archives/2017/september/snakebot-mexico.html
https://www.cmu.edu/news/stories/archives/2017/september/snakebot-mexico.html

RL setup

- State space, ;S‘

* Action space, ail

- Reward function

» Stochastic, p(r | s, a)

* Deterministic, R: ¢§‘ x_c/l - IiR T (S, &)
* Transition function

» Stochastic, 'p(s_‘_’ | s, Q)

* Deterministic, 0: § X A = §

* Reward and transition functions can be known or unknown



RL setup

i ( can be Shochaab)
* Policy m:8 - A determinibe

* Specifies an action to take in every state

: g
- Value function, VZ: § - R v (s>
- Measures the expected total reward of starting in

some state s and executing policy i, i.e., in every

state, taking the action that m returns



RL example - gridworld

& = all empty squares in the
grid

A = {up, down, left, right}

Deterministic transitions

Rewards of +1 and -1 for
entering the labelled squares

Terminate after receiving either
reward .



RL example - gridworld

S = all empty squares in the
grid

A = {up, down, left, right}

Deterministic transitions

Rewards of +1 and -1 for
entering the labelled squares

Poll: Is this policy optimal?

Terminate after receiving either
reward ;



RL example - gridworld

S = all empty squares in the
grid

A = {up, down, left, right}

Deterministic transitions

Rewards of +1 and -1 for
entering the labelled squares
Optimal policy given a reward of

Terminate after receiving either -2 per step
—

reward
10



RL example - gridworld

S = all empty squares in the
grid

A = {up, down, left, right}

Deterministic transitions

Rewards of +1 and -1 for
entering the labelled squares

Optimal policy given a reward of

Terminate after receiving either -0.1 per step
—

reward
11



Reward hacking

Alhub.org

t
Desired behavior Hacking the reward function

[Amodei-Clark’16]
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Markov Decision Process

1. Startin some initial state s

—

2. For time step t: :
g Syochaate g
a. Agent observes state s; a~ T
b. Agent takes action a; = ZT(St) Deterministic policy

c. Agentreceivesrewardry ~ p(r | s¢, ap) €

d. Agent transitions to state s;,1 ~ p(s' | s¢, az)

* MDPs make the Markov assumption: the reward and next

state only depend on the current state and action.
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Discounted Reward

ool

Total reward is z Yire =rg+yr +yin +yv3in 4+ .

=200 -

where 0 < y < 1 is some discount factor for future rewards

— @

Why discount?

- Mathematically tractable — total reward doesn’t explode

1+1+1+..=0c0 but 1+0.8%1+(0.8)**1+..=5

* Risk aversion under uncertainty

* Actions don’t have lasting impact
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Key challenges

The algorithm has to gather its own training data

The outcome of taking some action is often stochastic or

unknown until after the fact

Decisions can have a delayed effect on future outcomes

(exploration-exploitation tradeoff)

explore decisions whose reward is uncertain

exploit decisions which give high reward

15



MDP example: Multi-armed bandits

e —

Single state: |[S| =1

Three actions: A = {1, 2, 3}
Deterministic transitions
Rewards are stochastic
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MDP example: Multi-armed bandits

1 2

1 0

1
0
1 3
2
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RL: objective function

o
* Find a policy m* = argmax V™(s) Vs € S weo)

T —

<A

- V™ (s) = E[discounted total reward of starting in state
(4
s and executing policy  forever]

= [E [R(SO = S,T[(SO))

+ yR(s;l‘, 73&31)) + ZZR(fE'nng)) + -]

00 J——v
= z VE|R(s¢, m(sy))]
t=0 I

where 0 < y < 1 is some discount factor for future rewards
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Value function: example

1
-2 (@ 7

(2 if entering state 0/(safety)
R(s,a) = { 3 ?f enter¥ng state 5 ’(ﬁeld goal)

7 if entering state 6 (touch down)
_ 0 otherwise
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Value function: example

G

G

(_2if entering state 0 (safety)

3 if entering state 5 (field goal)
7 if entering state 6 (touch down)
_ 0 otherwise -

0+0°9%2 040 93

T 3

~

—2 | =18 || 2.7 3 0

£
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Value function: example

G
Ol=[=]==C

(_2if entering state 0 (safety)
R(s,a) = 4 3 ¥f enter}ng state 5 (field goal)

7 if entering state 6 (touch down)
_ 0 otherwise

— 3
V=09 gxo0, wod" gx04

™ T ™
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Value function — deterministic reward

— =

r(g’/s,a)

. V”(S) = [E[discounted total reward of starting in state s and

—= ElFRY) -
executing policy i forever]

s ?(ﬂ )

= R(so T[(SO)) -+ yR(51 n(sl)) -+ yzR(sz n(sz)) + - | SO = 5]
- S S et «C

' k(‘l J)){- -
{2(5 n(s)) + y[E R(51 n(sl)) + )/R(SZ n(sz)) .| Sog = 5]

= R(s,1()) + 7 s c5p(s1 | n(s))ER(sl (1))
NI I-SS——
+YE[R(sz,7(s2)) + - | 51])

YATEY)

VT(s) = R(S,T[(S)) +y z p(51 | s,n(s))V”(sl) Bellman equations

S]_ES
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|
Optimal value function and policy

* Optimal value function:
—_— —

v (s) = max [R(s,a) + y ng(s |s,a)V* (s’)] 7 e

- System of |§| equations and |§| variables — nonlinear!
—_—

* Optimal policy:

n*(s) = argmax R(s,a) + y p(s'|s, a)V (s") ./
aeA

-— s'es
R/_/ N\
Y
Immediate  Expected (Discounted)
reward Future reward

—

* Insight: if you know the optimal value function, you can solve

for the optimal policy! 23



Value iteration

* Inputs: R(s,a), p(s’ | s,a),0 <y <1

e ‘ ~—

+ Initialize V(9(s) = 0V s € S (or randomly) and set t = 0

—

- While not converged, do:
*Forsesd

V() « max [R(s,a) +y 2 p(s' |5,V (s")]

—‘: s'eS )
S, a
‘t=t+1 Qs a)
‘Fors €S

m*(s) < argmax [R(s,a) + ¥ X s0(S' |5, a)V(t)(s’)]
aEA —

* Return t*
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