Reinforcement Learning II

Aarti Singh

Machine Learning 10-701 Apr 5, 2023

Slides courtesy: Henry Chai, Eric Xing

 $MDP:$

- 1. Start in some initial state s_0
- 2. For time step t :
	- a. Agent observes state s_t
	- b. Agent takes action $a_t = \pi(s_t)$
	- c. Agent receives reward $r_t \sim p(r \mid s_t, a_t)$
	- d. Agent transitions to state $s_{t+1} \sim p(s' | s_t, a_t)$

 $\n *n*$ - prlicy

RL setup

- Policy, $\pi : \mathcal{S} \to \mathcal{A}$
	- Specifies an action to take in *every* state
- Value function, V^{π} : $S \to \mathbb{R}$
	- $\cdot V^{\pi}(s) = \mathbb{E}[discounted \text{ total reward of starting in state } s \text{ and } s]$ executing policy π forever]

 $=\sum_{t=0}^{\infty}\gamma^{t}\mathbb{E}\big[R\big(s_{t},\pi(s_{t})\big)\big]$ **o** $\overbrace{\mathsf{R}}^{\P}$ deterministic reward

 Goal: Find policy that maximizes expected discounted total reward

$$
\pi^* = \underset{\pi}{\text{argmax}} \quad V^{\pi}(s) \ \forall \ s \in \mathcal{S}
$$

Bellman Equation

Value function satisfies the set of recursive equations:

$$
V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s_1 \in S} p(s_1 \mid s, \pi(s)) V^{\pi}(s_1)
$$

Optimal value function:

$$
V^*(s) = \max_{a \in \mathcal{A}} [R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a)V^*(s')] \longrightarrow
$$

• System of S equations and S variables – nonlinear!

• Optimal policy:

$$
\pi^*(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^*(s')
$$

Value iteration

Krown

- Inputs: $R(s, a)$, $p(s' | s, a)$, $0 < y < 1$
- Initialize $V^{(0)}(s) = 0 \forall s \in S$ (or randomly) and set $t = 0$ $\sqrt[n]{10}$ - value of a state
- While not converged, do:

• For
$$
s \in S
$$

\n
$$
V^{(t+1)}(s) \leftarrow \max_{a \in \mathcal{A}} [R(s, a) + \gamma \sum_{s' \in S} p(s' \mid s, a) V^{(t)}(s')] \longrightarrow
$$
\n• $t = t + 1$
\n
$$
V^{(s)}(s, a) = \sum_{s' \in S} p(s' \mid s, a) V^{(t)}(s') \longrightarrow
$$
\n
$$
Q(s, a) = \sum_{s' \in S} q_s
$$
\n
$$
Q(s, a) = \sum_{s' \in S} q_s
$$
\n
$$
Q(s, a) = \sum_{s' \in S} q_s
$$

 $\cdot t = t + 1$

 \cdot For $s \in S$

 $\pi^*(s)$ ← argmax $[R(s, a) + \gamma \sum_{s' \in S} p(s' | s, a)V^{(t)}(s')]$ $a \in \mathcal{A}$

• Return π^*

Value iteration

- \cdot Initialize $V^{(0)}(s) = 0 \forall s \in S$ (or randomly) and set $t = 0$
- While not converged, do:

• For
$$
a \in A
$$

\n• For $a \in A$
\n $Q(s, a) = R(s, a) + \gamma \sum_{s' \in S} p(s' | s, a)V^{(t)}(s')$
\n• $V^{(t+1)}(s) \leftarrow \max_{a \in A} Q(s, a)$
\n• $t = t + 1$
\n• For $s \in S$
\n $\pi^*(s) \leftarrow \operatorname*{argmax}_{a \in A} Q(s, a)$
\n• Return π^*

Value iteration: convergence

Theorem 1: Value function convergence V will converge to V^* if each state is "visited" infinitely often (Bertsekas, 1989)

Theorem 2: Convergence criterion if max $s \in \mathcal{S}$ $|V^{(t+1)}(s) - V^{(t)}(s)| < \epsilon,$ then max $s \in \mathcal{S}$ $|V^{(t+1)}(s) - V^{*}(s)| < \frac{2\epsilon\gamma}{4\epsilon}$ $\frac{2eV}{1-\gamma}$ (Williams & Baird, 1993)

Theorem 3: Policy convergence The "greedy" policy, $\pi(s) = \argmax Q(s, a)$, converges to the

 $a \in \mathcal{A}$ optimal π^* in a finite number of iterations, often before the value function has converged! (Bertsekas, 1987)

Policy iteration

 \triangleright Can we learn the policy directly, instead of first learning the value function?

- krown • Inputs: $R(s, a)$, $p(s' | s, a)$, $0 < y < 1$
- \cdot Initialize π randomly
- While not converged, do:
	- Solve the Bellman equations defined by policy π

$$
V_{\frac{\pi}{s}}^{(\mathbf{g})}(\mathbf{s}) = R(s, \pi(\mathbf{s})) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, \pi(\mathbf{s})) V_{\frac{\pi}{s}}^{(\mathbf{g})}(\mathbf{s}') \text{ solve for } V^{\mathbf{g}}(\mathbf{s})
$$

 \cdot Update π

$$
\pi(s) \leftarrow \underset{\pi}{\operatorname{argmax}} R(s, a) + \gamma \sum_{s' \in S} p(s' \mid s, a) V_{\pi}^{\pi}(s')
$$

• Return π

Now linear!

 $V^{*f}(s) = max_{a \in A}$ $R + \cdots$

Policy iteration: convergence $IM = 222$

- Number of policies: $|A|^{S}$
- Policy improves each iteration
- Thus, the number of iterations needed to converge is bounded!
- Empirically, policy iteration requires fewer iterations than value iteration.

 2^3

 $ISL23$

Next Questions

- Ø How to handle unknown state transition and reward functions?
- \triangleright How to handle continuous states and actions?

Optimal Q function and policy

- Deterministic rewards
- $Q^*(s, a) =$ E[total discounted reward of taking action a in state s , assuming all future actions are optimal]

$$
= R(s, a) + \gamma \sum_{s' \in S} p(s' \mid s, a)V^*(s')
$$

$$
V^*(s') = \max_{a' \in \mathcal{A}} Q^*(s', a')
$$

$$
Q^*(s, a) = R(s, a) + \gamma \sum_{s' \in S} p(s' \mid s, a) \left[\max_{a' \in \mathcal{A}} Q^*(s', a') \right]
$$

$$
\pi^*(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q^*(s, a)
$$

• Insight: if we know Q^* , we can compute an optimal policy $\pi^*!$

Optimal Q function and policy

- Deterministic rewards and state transitions
- $Q^*(s, a) =$ E[total discounted reward of taking action a in state s , assuming all future actions are optimal]

 $= R(s, a) + \gamma V^* (\delta(s, a))$

$$
V^*(\delta(s, a)) = \max_{a' \in \mathcal{A}} Q^*(\delta(s, a), a')
$$

$$
Q^*(s, a) = R(s, a) + \gamma \max_{a' \in \mathcal{A}} Q^*(\delta(s, a), a')
$$

$$
\pi^*(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q^*(s, a)
$$

• Insight: if we know Q^* , we can compute an optimal policy $\pi^*!$

Online Q-learning

 \cdot Inputs: discount factor γ , an initial state s

- \cdot Initialize $Q(s, a) = 0 \forall s \in \mathcal{S}, a \in \mathcal{A}$ (Q is a $|\mathcal{S}| \times |\mathcal{A}|$ array)
- While TRUE, do
	- \cdot Take a random action a

- Receive reward $r = R(s, a)$
- Update the state: $s \leftarrow s'$ where $s' = \delta(s, a)$
- Update $Q(s, a)$:

 $Q(s, a) \leftarrow r + \gamma \max_{a'} Q(s', a')$

Q-learning example

Which set of blue arrows (roughly) corresponds to $Q^*(s, a)$?

$$
Q^*(s, a) = R(s, a) + \gamma V^* (\delta(s, a))
$$
\n
$$
V^*(s) \text{ shown in green}
$$
\n
$$
V^*\left(s\right) = \gamma V^*\left(s\right)
$$
\n
$$
V^*\
$$

16

Online Q-learning

 \cdot Inputs: discount factor γ , an initial state s

- \cdot Initialize $Q(s, a) = 0 \forall s \in S, a \in \mathcal{A}$ (Q is a $|S| \times |\mathcal{A}|$ array)
- While TRUE, do
	- \cdot Take a random action a

- Receive reward $r = R(s, a)$
- Update the state: $s \leftarrow s'$ where $s' = \delta(s, a)$
- Update $Q(s, a)$:

 $Q(s, a) \leftarrow r + \gamma \max_{a'} Q(s', a')$

e**-greedy Online Q-learning**

- \cdot Inputs: discount factor γ , an initial state s , greediness parameter $\epsilon \in [0,1]$
- Initialize $Q(s, a) = 0 \forall s \in \mathcal{S}, a \in \mathcal{A}$ (Q is a $|\mathcal{S}| \times |\mathcal{A}|$ array)
- While TRUE, do
	- \cdot With probability ϵ , take the greedy action

 $a = \argmax Q(s, a^{\prime})$ $a^{\prime} = 4$

Otherwise, with probability $1 - \epsilon$, take a random action $a \, \mathbf{e}$

- Receive reward $r = R(s, a)$
- Update the state: $s \leftarrow s'$ where $s' = \delta(s, a)$
- Update $Q(s, a)$:

$$
Q(s, a) \leftarrow r + \gamma \max_{a'} Q(s', a')
$$

Stochastic Transitions $s, a \rightarrow s'$
count factor γ , an initial state c

- \cdot Inputs: discount factor γ , an initial state s , greediness parameter $\epsilon \in [0, 1]$, learning rate $\alpha \in [0,1]$ ("trust parameter")
- \cdot Initialize $Q(s, a) = 0 \forall s \in \mathcal{S}, a \in \mathcal{A}$ (Q is a $|\mathcal{S}| \times |\mathcal{A}|$ array)
- While TRUE, do
	- With probability ϵ , take the greedy action

 $a = \text{argmax} Q(s, a')$ $a^{\overline{t}} \in \mathcal{A}$

Otherwise, with probability $1 - \epsilon$, take a random action a

- Receive reward $r = R(s, a)$
- \cdot Update the state: $s \leftarrow s'$ where $s' \sim p(s' | s, a)$
- Update $Q(s, a)$:

$$
Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha \left(r + \gamma \max_{a'} Q(s', a')\right)
$$

Current value
deterministic transitions

Temporal Difference Learning

- \cdot Inputs: discount factor γ , an initial state s , greediness parameter $\epsilon \in [0, 1]$, learning rate $\alpha \in [0,1]$ ("trust parameter")
- \cdot Initialize $Q(s, a) = 0 \forall s \in \mathcal{S}, a \in \mathcal{A}$ (Q is a $|\mathcal{S}| \times |\mathcal{A}|$ array)
- While TRUE, do
	- With probability ϵ , take the greedy action

```
a = \text{argmax} Q(s, a')a^{\mathsf{T}} \in \mathcal{A}
```
Otherwise, with probability $1 - \epsilon$, take a random action a

- Receive reward $r = R(s, a)$
- Update the state: $s \leftarrow s'$ where $s' \sim p(s' | s, a)$
- Update $Q(s, a)$:

$$
Q(s, a) \leftarrow Q(s, a) + \alpha \left(r + \gamma \max_{a'} Q(s', a') - Q(s, a)\right)
$$

Current value
Temporal difference target

Temporal difference

 \mathbf{A}

Q – learning: convergence

- For Algorithms 1 & 2 (deterministic transitions), Q converges to Q^* if
	- 1. Every valid state-action pair is visited infinitely often
		- Q-learning is exploration-insensitive: any visitation strategy that satisfies this property will work!
	- 2. $0 \le \gamma < 1$
	- 3. $\exists \beta \text{ s.t. } |R(s, a)| < \beta \forall s \in \mathcal{S}, a \in \mathcal{A}$
	- 4. Initial Q values are finite

Q – learning: convergence

- \cdot For Algorithm 3 (temporal difference learning), Q converges to Q^* if
	- Every valid state-action pair is visited infinitely often
		- Q-learning is exploration-insensitive: any visitation strategy that satisfies this property will work!
	- 2. $0 \le \gamma < 1$
	- 3. $\exists \beta \text{ s.t. } |R(s, a)| < \beta \forall s \in \mathcal{S}, a \in \mathcal{A}$
	- 4. Initial Q values are finite
	- Learning rate α_t follows some "schedule" s.t.

 $\sum_{t=0}^{\infty} \alpha_t = \infty$ and $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$ e.g., $\alpha_t = \frac{1}{t+1}$

Deep Q-learning

- What if state-action spaces are continuous?
- Use a parametric function, $Q(s, a; \underline{\Theta})$, to approximate $Q^*(s,a)$
	- Learn the parameters using SGD
	- Training data (s_t, a_t, r_t, s_{t+1}) gathered online by the agent/learning algorithm
- If the approximator is a deep neural network => deep Q-learning

AlphaGo (Black) vs. Lee Sedol (White)
Game 2 final position (AlphaGo wins) Playing Go

 19-by-19 board Players alternate placing black and white stones The goal is claim more territory than the opponent

There are $^{\sim}10^{170}$ legal Go board states!
 $\mathbb{Q}(\mathbb{R}^n,-)$

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol Source: https://en.wikipedia.org/wiki/Go_and_mathematics

Deep Q-learning: Model

- Represent states using some feature vector $s_t \in \mathbb{R}^M$ e.g. for Go, $s_t = [1, 0, -1, ..., 1]^T$
- Define a neural network architecture

Deep Q-learning: Loss function

"True" loss

$$
l(\Theta) = \sum_{s \in S} \sum_{a \in A} \left(Q^*(s, a) - Q(s, a; \Theta) \right)^2
$$

1. S too big to compute this sum

- 1. Use stochastic gradient descent: just consider one stateaction pair in each iteration
- 2. Use temporal difference learning:
	- Given current parameters $\Theta^{(t)}$ the temporal difference target is \mathbf{J}

$$
Q^*(s, a) \approx r + \gamma \max_{a'} Q(s', a'; \underline{\Theta^{(t)}}) \coloneqq y
$$

Set the parameters in the next iteration $\Theta^{(t+1)}$ such that $Q(s, a; \Theta^{(t+1)}) \approx y$

$$
\ell(\Theta^{(t)}, \Theta^{(t+1)}) = \left(y - Q(s, a; \Theta^{(t+1)})\right)^2
$$

Deep Q-learning: parametric online learning

• Inputs: discount factor γ , an initial state s_0 ,

learning rate α

- Initialize parameters $\Theta^{(0)}$
- For $t = 0, 1, 2, ...$
	- Gather training sample (s_t, a_t, r_t, s_{t+1}) , compute y
	- Update $\Theta^{(t)}$ by taking a step opposite the gradient $\Theta^{(t+1)} \leftarrow \Theta^{(t)} - \underset{\boldsymbol{\epsilon}}{\alpha} \nabla_{\Theta^{(t+1)}} \ell(\Theta^{(t)}, \Theta^{(t+1)})$

where

$$
\nabla_{\Theta^{(t+1)}} \ell(\Theta^{(t)}, \Theta^{(t+1)})
$$

= $2\left(y - Q(s, a; \Theta^{(t+1)})\right) \nabla_{\Theta^{(t+1)}} Q(s, a; \Theta^{(t+1)})$

Deep Q-learning: Experience replay

- Issue: SGD assumes i.i.d. training samples but in RL, samples are *highly* correlated
- Idea: keep a "replay memory" $\mathcal{D} = \{e_1, e_2, ..., e_N\}$ of the N most recent experiences $e_t = (\mathbf{s}_t, \mathbf{a}_t, r_t, \mathbf{s}_{t+1})$ (Lin, 1992)
	- Also keeps the agent from "forgetting" about recent experiences
- Alternate between:
	- 1. Sampling some e_i uniformly at random from D and applying a Q-learning update (repeat T times)
	- 2. Adding a new experience to $\mathcal D$
- \cdot Can also sample experiences from $\mathcal D$ according to some distribution that prioritizes experiences with high error (Schaul et al., 2016)

RL summary

- States, actions, rewards
- Policy
- Value function, Q function
- Finding optimal policy:
	- value iteration \sim
	- policy iteration
- Unknown reward and transition function:
	- Q learning (including temporal difference) \sim
- Continuous states and actions:
	- parametric models, deep Q learning
	- Experience replay