
Reinforcement Learning II

Aarti Singh

Machine Learning 10-701
Apr 5, 2023

Slides courtesy: Henry Chai, Eric Xing

RL setup

2

AI agentEnvironment

Reward, rt

Action, at

State, st

Wikimedia

1. Start in some initial state 𝑠!

2. For time step 𝑡:
a. Agent observes state 𝑠"
b. Agent takes action 𝑎" = 𝜋 𝑠"
c. Agent receives reward 𝑟" ∼ 𝑝 𝑟 𝑠", 𝑎")

d. Agent transitions to state 𝑠"#$ ∼ 𝑝 𝑠% 𝑠", 𝑎")

RL setup

3

� Policy, 𝜋 ∶ 𝒮 → 𝒜

� Specifies an action to take in every state

� Value function, 𝑉!: 𝒮 → ℝ

� 𝑉! 𝑠 = 𝔼[discounted total reward of starting in state 𝑠 and
executing policy 𝜋 forever]

= ∑"#$% 𝛾"𝔼 𝑅 𝑠" , 𝜋 𝑠"

� Goal: Find policy that maximizes expected discounted total

reward

𝜋∗ = argmax
!

𝑉! 𝑠 ∀ 𝑠 ∈ 𝒮

R – deterministic reward

Bellman Equation

4

𝑉& s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 1
'!∈ 𝒮

𝑝 𝑠$ | 𝑠, 𝜋 𝑠 𝑉& 𝑠$

Value function satisfies the set of recursive equations:

� Optimal value function:

𝑉∗ 𝑠 = max
+ ∈𝒜

[𝑅 𝑠, 𝑎 + 𝛾 1
'"∈ 𝒮

𝑝 𝑠% | 𝑠, 𝑎 𝑉∗ 𝑠%]

� System of 𝒮 equations and 𝒮 variables – nonlinear!

� Optimal policy:

𝜋∗ 𝑠 = argmax
+ ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 1
'"∈ 𝒮

𝑝 𝑠% | 𝑠, 𝑎 𝑉∗ 𝑠%

Value iteration

5

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎), 0 < 𝛾 < 1

� Initialize 𝑉 $ 𝑠 = 0 ∀ 𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮

𝑉 "'(𝑠 ← max
) ∈𝒜

[𝑅 𝑠, 𝑎 + 𝛾 D
,!∈ 𝒮

𝑝 𝑠. | 𝑠, 𝑎 𝑉 " 𝑠.]

� 𝑡 = 𝑡 + 1

� For 𝑠 ∈ 𝒮

𝜋∗ 𝑠 ← argmax
) ∈𝒜

[𝑅 𝑠, 𝑎 + 𝛾 ∑,!∈ 𝒮 𝑝 𝑠. | 𝑠, 𝑎 𝑉 " 𝑠.]

� Return 𝜋∗

𝑄 𝑠, 𝑎

Value iteration

6

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎), 0 < 𝛾 < 1

� Initialize 𝑉 $ 𝑠 = 0 ∀ 𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮
� For 𝑎 ∈ 𝒜

𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 D
,!∈ 𝒮

𝑝 𝑠. | 𝑠, 𝑎 𝑉 " 𝑠.

� 𝑉 "'(𝑠 ← max
) ∈𝒜

𝑄 𝑠, 𝑎
� 𝑡 = 𝑡 + 1

� For 𝑠 ∈ 𝒮
𝜋∗ 𝑠 ← argmax

) ∈𝒜
𝑄(𝑠, 𝑎)

� Return 𝜋∗

Value iteration: convergence
Theorem 1: Value function convergence

𝑉 will converge to 𝑉∗ if each state is “visited”
infinitely often (Bertsekas, 1989)

Theorem 2: Convergence criterion
if max
, ∈ 𝒮

𝑉 "'(𝑠 − 𝑉 " 𝑠 < 𝜖,

then max
, ∈ 𝒮

𝑉 "'(𝑠 − 𝑉∗ 𝑠 < /01
(21

(Williams & Baird, 1993)

Theorem 3: Policy convergence
The “greedy” policy, 𝜋 𝑠 = argmax

) ∈𝒜
𝑄 𝑠, 𝑎 , converges to the

optimal 𝜋∗ in a finite number of iterations, often before
the value function has converged! (Bertsekas, 1987)

7

Policy iteration

8

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎), 0 < 𝛾 < 1

� Initialize 𝜋 randomly

� While not converged, do:
� Solve the Bellman equations defined by policy 𝜋

𝑉! s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 D
,!∈ 𝒮

𝑝 𝑠. | 𝑠, 𝜋 𝑠 𝑉! 𝑠.

� Update 𝜋

− 𝜋 𝑠 ← argmax
) ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 D
,!∈ 𝒮

𝑝 𝑠. | 𝑠, 𝑎 𝑉! 𝑠.

� Return 𝜋

Ø Can we learn the policy directly, instead of first learning the value function?

Now linear!

Policy iteration: convergence

9

• Number of policies: |A||S|

• Policy improves each iteration
• Thus, the number of iterations needed to converge is

bounded!

• Empirically, policy iteration requires fewer iterations than
value iteration.

Next Questions

ØHow to handle unknown state transition and reward
functions?

ØHow to handle continuous states and actions?

10

Optimal Q function and policy

11

� Deterministic	rewards

� 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in
state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 D
,!∈ 𝒮

𝑝 𝑠. | 𝑠, 𝑎 𝑉∗ 𝑠.

𝑉∗ 𝑠. = max
)! ∈𝒜

𝑄∗ 𝑠., 𝑎.

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 D
,!∈ 𝒮

𝑝 𝑠. | 𝑠, 𝑎 max
)! ∈𝒜

𝑄∗ 𝑠., 𝑎.

𝜋∗ 𝑠 = argmax
) ∈𝒜

𝑄∗ 𝑠, 𝑎

� Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!

Optimal Q function and policy

12

� Deterministic	rewards	and	state	transitions

� 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in
state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎

� 𝑉∗ 𝛿 𝑠, 𝑎 = max
)! ∈𝒜

𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎.

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 max
)! ∈𝒜

𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎.

𝜋∗ 𝑠 = argmax
) ∈𝒜

𝑄∗ 𝑠, 𝑎

� Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!

Online Q-learning

13

� Inputs: discount factor 𝛾, an initial state 𝑠

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

� While TRUE, do
� Take a random action 𝑎

� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠. where 𝑠. = 𝛿 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
)!

𝑄 𝑠., 𝑎.

Q-learning example

14

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎 represented by
𝛾 = 0.9

15

5

1 2 3 40

0

0

0

0

0 7

3

-2

0

0 0

5

2 3 4

5.10

5.67

5.67

6.3

6.3 7

3

-2

0

0 0

5

2 3 44.59

5.10 5.67

5.67

6.3 7

3

-2

0

0 0

1

1

5.10

5.10

𝛾 = 0.9

Which set of blue arrows
(roughly) corresponds to 𝑄∗(𝑠, 𝑎)?

16

Which set of blue arrows
(roughly) corresponds to 𝑄∗(𝑠, 𝑎)?

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎

5.10 5.67 6.3 7

5

2 3 4

5.10

5.67

5.67

6.3

6.3 7

3

-2

0

0 0

5.10 5.67 6.3 7

5

2 3 44.59

5.10 5.67

5.67

6.3 7

3

-2

0

0 0

1

1

5.10

5.10

𝑉∗ 𝑠 shown in green

17

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

2 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎 represented by
𝛾 = 0.9

18

6

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑄 3,→ ← 0 + 0.9 max
3!∈ →,←,↑,↻

𝑄 4, 𝑎8 = 0

𝑅 𝑠, 𝑎 represented by
𝛾 = 0.9

19

6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

𝑅 𝑠, 𝑎 represented by
𝛾 = 0.9

20

6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

𝑄 4, ↑ ← 3 + 0.9 max
3!∈ →,←,↑,↻

𝑄 5, 𝑎8 = 3

𝑅 𝑠, 𝑎 represented by
𝛾 = 0.9

21

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

5

2 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑄 3,→ ← 0 + 0.9 max
3!∈ →,←,↑,↻

𝑄 4, 𝑎8 = 2.7

𝑅 𝑠, 𝑎 represented by
𝛾 = 0.9

22

6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 2.7 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

𝑄 3,→ ← 0 + 0.9 max
3!∈ →,←,↑,↻

𝑄 4, 𝑎8 = 2.7

𝑅 𝑠, 𝑎 represented by
𝛾 = 0.9

Online Q-learning

23

� Inputs: discount factor 𝛾, an initial state 𝑠

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

� While TRUE, do
� Take a random action 𝑎

� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠. where 𝑠. = 𝛿 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
)!

𝑄 𝑠., 𝑎.

e-greedy Online Q-learning

24

� Inputs: discount factor 𝛾, an initial state 𝑠,
greediness parameter 𝜖 ∈ 0, 1

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

� While TRUE, do
� With probability 𝜖, take the greedy action

𝑎 = argmax
)! ∈𝒜

𝑄 𝑠, 𝑎.

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠. where 𝑠. = 𝛿 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
)!

𝑄 𝑠., 𝑎.

Stochastic Transitions

25

� Inputs: discount factor 𝛾, an initial state 𝑠,
greediness parameter 𝜖 ∈ 0, 1 ,
learning rate 𝛼 ∈ 0, 1 (“trust parameter”)

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

� While TRUE, do
� With probability 𝜖, take the greedy action

𝑎 = argmax
)! ∈𝒜

𝑄 𝑠, 𝑎.

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠. where 𝑠. ∼ 𝑝 𝑠. 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
)!

𝑄 𝑠., 𝑎.

Current value Update w/
deterministic transitions

Temporal Difference Learning

26

� Inputs: discount factor 𝛾, an initial state 𝑠,
greediness parameter 𝜖 ∈ 0, 1 ,
learning rate 𝛼 ∈ 0, 1 (“trust parameter”)

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

� While TRUE, do
� With probability 𝜖, take the greedy action

𝑎 = argmax
)! ∈𝒜

𝑄 𝑠, 𝑎.

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠. where 𝑠. ∼ 𝑝 𝑠. 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
)!

𝑄 𝑠., 𝑎. − 𝑄 𝑠, 𝑎

Current value Temporal difference target

Temporal
difference

Q – learning: convergence

27

� For Algorithms 1 & 2 (deterministic transitions), 𝑄 converges to
𝑄∗ if

1. Every valid state-action pair is visited infinitely often

� Q-learning is exploration-insensitive: any visitation
strategy that satisfies this property will work!

2. 0 ≤ 𝛾 < 1

3. ∃ 𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4. Initial 𝑄 values are finite

Q – learning: convergence

28

� For Algorithm 3 (temporal difference learning), 𝑄 converges to
𝑄∗ if

1. Every valid state-action pair is visited infinitely often

� Q-learning is exploration-insensitive: any visitation
strategy that satisfies this property will work!

2. 0 ≤ 𝛾 < 1

3. ∃ 𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4. Initial 𝑄 values are finite

5. Learning rate 𝛼" follows some “schedule” s.t.
∑"#$% 𝛼" = ∞ and ∑"#$% 𝛼"/ < ∞ e.g., 𝛼" = ⁄("'(

Deep Q-learning

29

� What if state-action spaces are continuous?

� Use a parametric function, 𝑄 𝑠, 𝑎; Θ , to approximate
𝑄∗ 𝑠, 𝑎

� Learn the parameters using SGD

� Training data 𝒔9, 𝑎9, 𝑟9, 𝒔9:; gathered online by
the agent/learning algorithm

� If the approximator is a deep neural network =>
deep Q-learning

30

Playing Go
AlphaGo (Black) vs. Lee Sedol (White)
Game 2 final position (AlphaGo wins)

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol

� 19-by-19 board

� Players alternate
placing black and
white stones

� The goal is claim
more territory
than the opponent

� There are ~10170

legal Go board
states!

Source: https://en.wikipedia.org/wiki/Go_and_mathematics

Deep Q-learning: Model

31

� Represent states using some feature vector 𝒔9 ∈ ℝ<
e.g. for Go, 𝒔9 = 1, 0, −1,… , 1 =

� Define a neural network architecture

𝒔9

𝑎9
Θ 𝑄 𝒔9, 𝑎9; Θ

𝒔9 Θ

𝑄 𝒔9, 𝑎;; Θ
𝑄 𝒔9, 𝑎>; Θ

𝑄 𝒔9, 𝑎 𝒜 ; Θ
⋮

Model 1:

Model 2:

Deep Q-learning: Loss function

32

� “True” loss

ℓ Θ = D
, ∈ 𝒮

D
) ∈𝒜

𝑄∗ 𝑠, 𝑎 − 𝑄 𝑠, 𝑎; Θ /

1. Use stochastic gradient descent: just consider one state-
action pair in each iteration

2. Use temporal difference learning:
� Given current parameters Θ 3 the temporal difference

target is
𝑄∗ 𝑠, 𝑎 ≈ 𝑟 + 𝛾max

)!
𝑄 𝑠., 𝑎.; Θ " ≔ 𝑦

� Set the parameters in the next iteration Θ 3'(such that
𝑄 𝑠, 𝑎; Θ 3'(≈ 𝑦

ℓ Θ 3 , Θ "'(= 𝑦 − 𝑄 𝑠, 𝑎; Θ 3'(
/

1. 𝒮 too big to compute this sum

2. Don’t know 𝑄∗

Deep Q-learning: parametric online
learning

33

� Inputs: discount factor 𝛾, an initial state 𝑠$,

learning rate 𝛼

� Initialize parameters Θ $

� For 𝑡 = 0, 1, 2, …
� Gather training sample 𝒔" , 𝒂" , 𝑟" , 𝒔"'(, compute 𝑦
� Update Θ " by taking a step opposite the gradient

Θ "'(← Θ " − 𝛼∇4 "#$ ℓ Θ " , Θ "'(

where
∇4 "#$ ℓ Θ " , Θ "'(

= 2 𝑦 − 𝑄 𝑠, 𝑎; Θ "'(∇4 "#$ 𝑄 𝑠, 𝑎; Θ "'(

Deep Q-learning: Experience replay

34

� Issue: SGD assumes i.i.d. training samples but in RL, samples are
highly correlated

� Idea: keep a “replay memory” 𝒟 = {𝑒1, 𝑒2, … , 𝑒𝑁} of the 𝑁 most
recent experiences 𝑒𝑡 = 𝒔𝑡, 𝒂" , 𝑟" , 𝒔"'((Lin, 1992)

� Also keeps the agent from “forgetting” about recent
experiences

� Alternate between:
1. Sampling some 𝑒𝑖 uniformly at random from 𝒟 and

applying a Q-learning update (repeat 𝛵 times)

2. Adding a new experience to 𝒟

� Can also sample experiences from 𝒟 according to some
distribution that prioritizes experiences with high error (Schaul
et al., 2016)

RL summary
• States, actions, rewards
• Policy
• Value function, Q function
• Finding optimal policy:

- value iteration
- policy iteration

• Unknown reward and transition function:
- Q learning (including temporal difference)

• Continuous states and actions:
- parametric models, deep Q learning
- Experience replay

35

