Graphical Models

Aarti Singh Slides Courtesy: Carlos Guestrin

Machine Learning 10-701/15-781 Apr 12, 2023

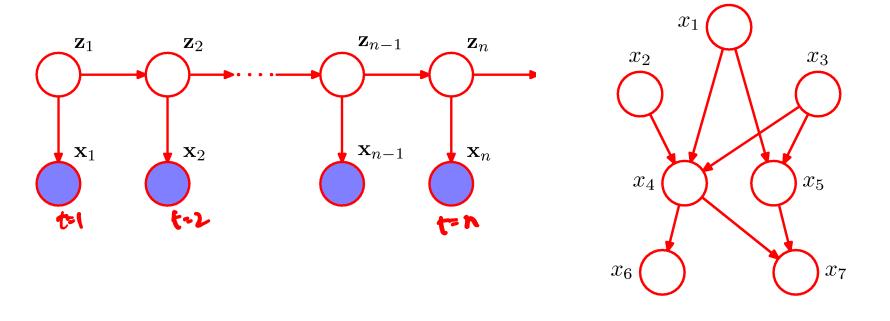
iid to dependent data

HMM

- sequential dependence

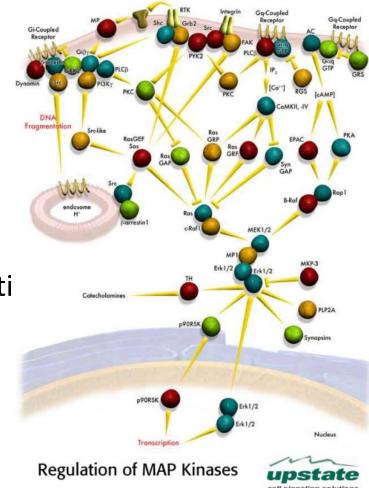
Graphical Models

 general conditional dependence



Applications

- Diagnosis of diseases
- Study Human genome
- Robot mapping
- Brain networks
- Fault diagnosis
- Modeling sensor network data
- Modeling protein-protein interacti
- Weather prediction
- Computer vision
- Statistical physics
- Many, many more ...



Conditional Independence

• X is **conditionally independent** of Y given Z:

probability distribution governing X is independent of the value of Y, given the value of Z

$$(\forall x, y, z) P(X = x | Y = y, Z = z) = P(X = x | Z = z)$$

• Equivalent to:

 $P(X, Y \mid Z) = P(X \mid Z)P(Y \mid Z) \leftarrow$

• Also to:

$$P(X \mid Y, Z) = P(X \mid Z)$$

Graphical Models

- Key Idea:

 - Conditional independence assumptions useful but Naïve Bayes is extreme! $(X_1 X_d, Y)$ $P(X_1 X_d, Y) = \int_{1}^{1} P(X_1, Y$
 - Graphical models express sets of conditional independence assumptions via graph structure
 - Graph structure + Conditional Probability Tables (CPTs) define joint probability distribution over set of variables/nodes
- Two types of graphical models:
 - Directed graphs (aka Bayesian Networks)

 Today
 - Undirected graphs (aka Markov Random Fields)

Topics in Graphical Models

Representation

Which joint probability distributions does a graphical model represent?

• Inference

- How to answer questions about the joint probability distribution?
 - Marginal distribution of a node variable
 - Most likely assignment of node variables
- Learning
 - How to learn the parameters and structure of a graphical model?

Directed - Bayesian Networks

• Representation

Which joint probability distributions does a graphical model represent?

For any arbitrary distribution, Chain rule: = p(bla,c) p(alc) p(c)

rule:

$$= p(b|a,c) p(a|c) p(c) \quad c,c,b$$

$$p(a,b,c) = p(c|a,b)p(b|a)p(a) \quad a,b,c$$

More generally:

$$p(\mathbf{X}) = \prod_{i=1}^{n} p(X_i | X_{i-1}, \dots, X_1)$$

Fully connected directed graph between X₁, ..., X_n

Directed - Bayesian Networks

• Representation

– Which joint probability distributions does a graphical model represent?

Absence of edges in a graphical model conveys useful information. $p(X_1) p(X_2) p(X_3) p(X_4 | X_1, X_2, X_3) \cdot p(X_5 | X_1, X_3) p(X_6 | X_4) p(X_7 | X_4, X_5)$ $p(X_1, X_3) p(X_6 | X_4) p(X_7 | X_4, X_5)$

Directed – Bayesian Networks

 x_1

 x_3

 x_5

 x_7

 x_2

 $x_{\mathcal{A}}$

 x_6

- Compact representation for a joint probability distribution
- Bayes Net = Directed Acyclic Graph (DAG) + Conditional Probability Tables (CPTs)
 - distribution factorizes according to graph $\mathbf{x} \in (\mathbf{x}_1 \dots \mathbf{x}_k)$ $p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k | \mathbf{pa}_k)$ parent \mathbf{j} node \mathbf{k}

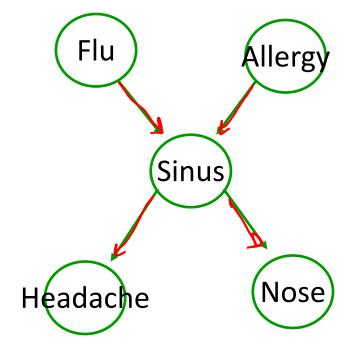
۲

= distribution satisfies local Markov assumption

 x_k is independent of its non-descendants given its parents pa_k

Bayesian Networks Example

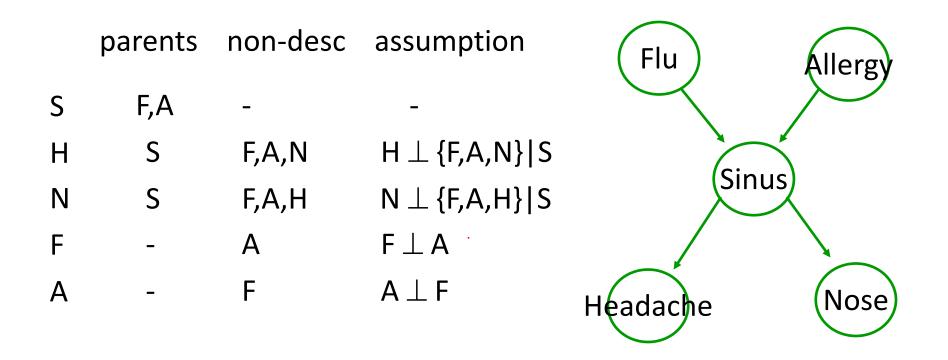
- Suppose we know the following:
 - The flu causes sinus inflammation
 - Allergies cause sinus inflammation
 - Sinus inflammation causes a runny nose
 - Sinus inflammation causes headaches
- Causal Network



 Local Markov Assumption: If you have no sinus infection, then flu has no influence on headache (flu causes headache but only through sinus)

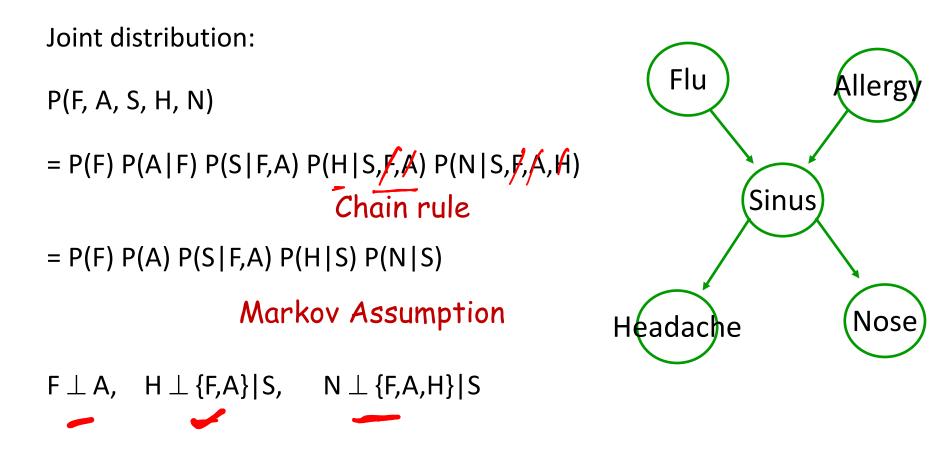
Markov independence assumption

Local Markov Assumption: A variable X is independent of its non-descendants given its parents (only the parents)



Markov independence assumption

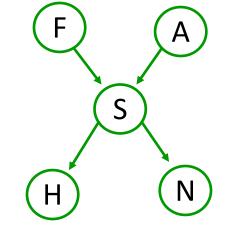
Local Markov Assumption: A variable X is independent of its nondescendants given its parents (only the parents)



Bayesian Network - ingredients

- Discrete variables X₁, ..., X_n
- Directed Acyclic Graph (DAG)
 Defines parents of X_i, Pa_{Xi}
- CPTs (Conditional Probability Tables)
 - $-P(X_i | Pa_{X_i}) \qquad p(x) = \prod_{i=1}^{n} p(x_i) pa(x_i)$

E.g.
$$X_i = S$$
, $Pa_{Xi} = \{F, A\}$



O(nK

	F=f, A=f	F=t, A=f	F=f, A=t	F=t,A=t
S=t	0.9 🗕	0.8 -	0.7 、	0.3
S=f	0.1 -	0.2 -	0.3 -	0.7

n variables, K values, max d parents/node

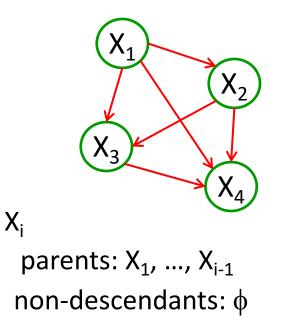
Two (trivial) special cases

Fully disconnected graph

 $\begin{array}{c} \overbrace{X_{1}} \\ \overbrace{X_{2}} \\ \overbrace{X_{3}} \\ \overbrace{X_{4}} \\ X_{i} \\ parents: \phi \\ non-descendants: X_{1},...,X_{i-1}, \\ X_{i+1},..., X_{n} \end{array}$

 $\mathbf{X_i} \perp \mathbf{X_1, ..., X_{i-1}, X_{i+1}, ..., X_n}$

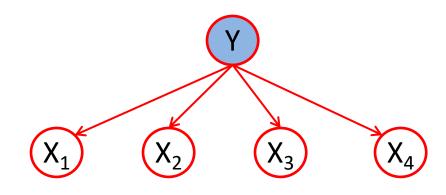
Fully connected graph



No independence ______

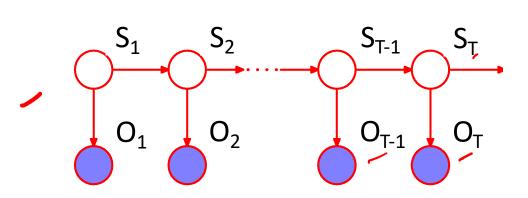
Bayesian Networks Example

• Naïve Bayes $X_i \perp X_1, ..., X_{i-1}, X_{i+1}, ..., X_n | Y$



 $P(X_1,...,X_n,Y) =$ $P(Y)P(X_1|Y)...P(X_1|Y)$

• HMM

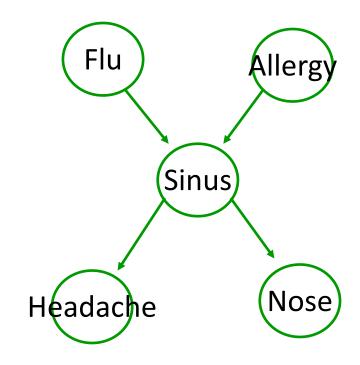


 $p(\{S_t\}_{t=1}^T, \{O_t\}_{t=1}^T) = p(S_1) \prod_{t=2}^T p(S_t | S_{t-1}) \prod_{t=1}^T p(O_t | S_t)$

Explaining Away

Local Markov Assumption: A variable X is independent of its nondescendants given its parents (only the parents)

$$F \perp A$$
 $P(F|A=t) = P(F)$ $F \perp A | S ?$ No! $P(F|A=t,S=t) = P(F|S=t)?$ No! $P(F=t|S=t)$ is high,
but $P(F=t|A=t,S=t)$ not as high
since $A = t$ explains away $S=t$ Infact, $P(F=t|A=t,S=t) < P(F=t|S=t)$ $F \perp A | N ?$ No!



Independencies encoded in BN

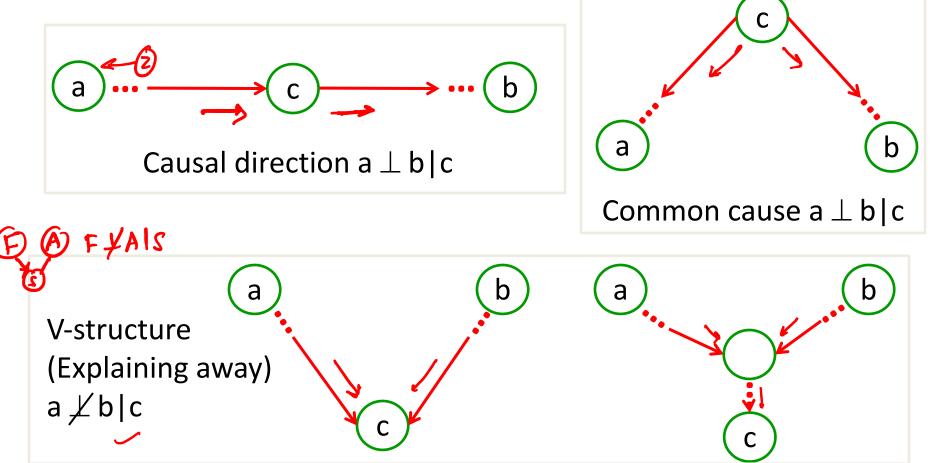
- We said: All you need is the local Markov assumption
 (X_i⊥NonDescendants_{xi} | Pa_{xi}) ✓
- But then we talked about other (in)dependencies

– e.g., explaining away

- What are the independencies encoded by a BN?
 - Only assumption is local Markov
 - But many others can be derived using the algebra of conditional independencies!!!

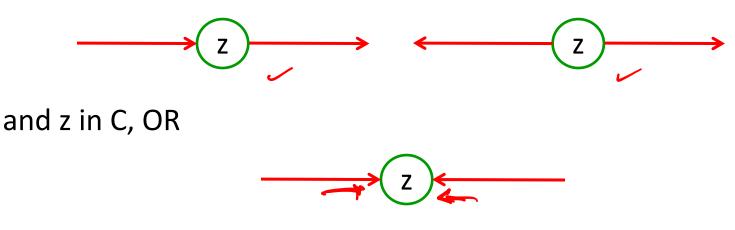
D-separation

- a is D-separated from b by $c \equiv a \perp b | c$
- Three important configurations



D-separation

- Ā, B, C non-intersecting set of nodes
- A is D-separated from B by C ≡ A ⊥ B | C if all paths between nodes in A & B are "blocked" i.e. path contains a node z such that either



and neither z nor any of its descendants is in C.

D-separation Example

A is D-separated from B by C if every path between A and B contains a node z such that either

