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iid to dependent data

HMM Graphical Models
- sequential dependence - general conditional 

dependence



Applications
• Diagnosis of diseases
• Study Human genome
• Robot mapping
• Brain networks
• Fault diagnosis
• Modeling sensor network data
• Modeling protein-protein interactions
• Weather prediction
• Computer vision
• Statistical physics
• Many, many more …



Conditional Independence

4

• X is conditionally independent of Y given Z:
probability distribution governing X is independent of the value 
of Y, given the value of Z

• Equivalent to:

• Also to:



Graphical Models

• Key Idea:
– Conditional independence assumptions useful
– but Naïve Bayes is extreme!
– Graphical models express sets of conditional independence 

assumptions via graph structure
– Graph structure + Conditional Probability Tables (CPTs) define 

joint probability distribution over set of variables/nodes

• Two types of graphical models:
– Directed graphs (aka Bayesian Networks)
– Undirected graphs (aka Markov Random Fields)

Today



Topics in Graphical Models
• Representation
– Which joint probability distributions does a graphical 

model represent?

• Inference
– How to answer questions about the joint probability 

distribution?
• Marginal distribution of a node variable
• Most likely assignment of node variables

• Learning
– How to learn the parameters and structure of a graphical 

model?



Directed - Bayesian Networks

• Representation
– Which joint probability distributions does a graphical 

model represent?

For any arbitrary distribution,
Chain rule:

More generally: 
Fully connected
directed graph 
between X1, …, Xn

p(Xi|Xi�1, . . . , X1)



Directed - Bayesian Networks

• Representation
– Which joint probability distributions does a graphical 

model represent?

Absence of edges in a graphical model conveys useful 
information.

p(X1, . . . , X7) = p(X1)p(X2)p(X3)p(X4|X1, X2, X3)

p(X1, . . . , X7) = p(X1)p(X2)p(X3)p(X4|X1, X2, X3)

p(X5|X1, X3)p(X6|X4)p(X7|X4, X5)

.

X1

X2 X3

X4 X5

X6 X7



Directed – Bayesian Networks

• Compact representation for a joint probability distribution

• Bayes Net = Directed Acyclic Graph (DAG) + Conditional 
Probability Tables (CPTs)

• distribution factorizes according to graph

≡ distribution satisfies local Markov assumption
xk is independent of its non-descendants
given its parents pak



Bayesian Networks Example

• Suppose we know the following:
– The flu causes sinus inflammation
– Allergies cause sinus inflammation
– Sinus inflammation causes a runny nose
– Sinus inflammation causes headaches

• Causal Network

• Local Markov Assumption: If you have no sinus infection, then 
flu has no influence on headache (flu causes headache but 
only through sinus)

Flu Allergy

Sinus

Headache Nose



Markov independence assumption 

Local Markov Assumption: A variable X is independent of its 
non-descendants given its parents (only the parents)

parents    non-desc assumption

S       
H
N
F
A

Flu Allergy

Sinus

Headache Nose

F,A - -
S F,A,N H ^ {F,A,N}|S
S F,A,H          N ^ {F,A,H}|S
- A F ^ A
- F A ^ F



Markov independence assumption 

Flu Allergy

Sinus

Headache Nose

Local Markov Assumption: A variable X is independent of its non-
descendants given its parents (only the parents)

Joint distribution:

P(F, A, S, H, N) 

= P(F) P(A|F) P(S|F,A) P(H|S,F,A) P(N|S,F,A,H)
Chain rule

= P(F) P(A) P(S|F,A) P(H|S) P(N|S)

Markov Assumption

F ^ A,    H ^ {F,A}|S,      N ^ {F,A,H}|S



Bayesian Network - ingredients

• Discrete variables X1, …, Xn

• Directed Acyclic Graph (DAG)
– Defines parents of Xi, PaXi

• CPTs (Conditional Probability Tables)
– P(Xi| PaXi)

E.g. Xi = S, PaXi = {F, A}

F=f, A=f F=t, A=f F=f, A=t        F=t,A=t 

S=t 0.9 0.8                0.7                 0.3
S=f 0.1 0.2                0.3                 0.7

n variables, K values, max d parents/node     O(nK x Kd)

F A

S

H N



Two (trivial) special cases
Fully disconnected graph Fully connected graph

Xi Xi

parents: f parents: X1, …, Xi-1

non-descendants: X1,…,Xi-1, non-descendants: f
Xi+1,…, Xn

Xi ^ X1,…,Xi-1,Xi+1,…, Xn No independence 
assumption

X1
X2

X3
X4

X1
X2

X3
X4



Bayesian Networks Example

• Naïve Bayes Xi ^ X1,…,Xi-1,Xi+1,…, Xn|Y

P(X1,…,Xn,Y) =
P(Y)P(X1|Y)…P(X1|Y)

• HMM

X1 X2 X3 X4

Y

O1 O2 OT-1 OT

S1 S2 ST-1 ST



Explaining Away

Flu Allergy

Sinus

Headache Nose

Local Markov Assumption: A variable X is independent of its non-
descendants given its parents (only the parents)

F ^ A P(F|A=t) = P(F)

F ^ A|S ?
P(F|A=t,S=t) = P(F|S=t)?

P(F=t|S=t) is high, 
but P(F=t|A=t,S=t) not as high
since A = t explains away S=t

Infact, P(F=t|A=t,S=t) < P(F=t|S=t)

F ^ A|N ? No!

No!



Independencies encoded in BN

• We said: All you need is the local Markov assumption
– (Xi ^ NonDescendantsXi | PaXi)

• But then we talked about other (in)dependencies
– e.g., explaining away

• What are the independencies encoded by a BN?
– Only assumption is local Markov
– But many others can be derived using the algebra of 

conditional independencies!!!



D-separation

• a is D-separated from b by c ≡ a ^ b|c
• Three important configurations

ca … … b

Causal direction a ^ b|c

c

Common cause a ^ b|c

…

a b

…

c

V-structure
(Explaining away)
a ^ b|c

a

…

b

…

c

a … b…

…



D-separation
• A, B, C – non-intersecting set of nodes
• A is D-separated from B by C ≡ A ^ B|C

if all paths between nodes in A & B are “blocked”
i.e. path contains a node z such that either

and z in C, OR

and neither z nor any of its descendants is in C.

z z

z



D-separation Example

a f

e

c

b

z z

z

And z in C

And neither z nor its descendants are in Cor

a ^ b | f ?
Yes, Consider z = f or z = e

a ^ b | c ?
No, Consider z = e

A is D-separated from B by C if every path between A and B contains 
a node z such that either

ØPoll




