Graphical Models

Aarti Singh

Slides Courtesy: Carlos Guestrin

Machine Learning 10-701/15-781
Apr 12,2023

ACHI




iid to dependent data

HMM Graphical Models
- sequential dependence - general conditional
dependence
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Applications

Diagnosis of diseases

Study Human genome

Robot mapping

Brain networks

Fault diagnosis

Modeling sensor network data
Modeling protein-protein interacti
Weather prediction

Computer vision

Statistical physics

Many, many more ...
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Conditional Independence

* Xis conditionally independent of Y given Z:

probability distribution governing X is independent of the value
of Y, given the value of Z

Ve,y,2) P(X =z|Y =y, Z =2) = P(X =z|Z = z)

* Equivalent to:
P(X,Y|2)=P(X|2)P(Y | 2) <

o R —

e Also to:
P(X|Y,Z2)=P(X|2)

—




Graphical Models

* Key Idea:
— Conditional independence assumptions useful o Xd W) = TW(X N)
— but Naive Bayes is extreme! (%4~ Xa .Y ) jr ——r

— Graphical models express sets of conditional independence
assumptions via graph structure

— Graph structure + Conditional Probability Tables (CPTs) define
joint probability distribution over set of variables/nodes

* Two types of graphical models:

— Directed graphs (aka Bayesian Networks) «——— Today
— Undirected graphs (aka Markov Random Fields)



Topics in Graphical Models

* Representation

— Which joint probability distributions does a graphical
model represent?

 |nference

— How to answer questions about the joint probability
distribution?
* Marginal distribution of a node variable
* Most likely assignment of node variables

* Learning

— How to learn the parameters and structure of a graphical
model?



Directed - Bayesian Networks

* Representation

— Which joint probability distributions does a graphical
model represent?

a

For any arbitrary distribution, h

)

Chain rule: = plblae) paley ple)  ceb

pla,b.c) = p(cla,b)p(bla)pla)  av.

b—-——“ ——— "

More generally:

n Fully connected

p(X) = Hp(X'i‘Xi—la o 7X1) directed graph

i between Xy, ..., X,
1=



Directed - Bayesian Networks

* Representation

— Which joint probability distributions does a graphical
model represent?

Absence of edges in a graphical model conveys useful
information.

) AR IR K
p(X1 X7) = pl¥s) x"/{‘rxl,%) .-

p(X1)p(X2)p(X3)p(X4| X1, X2, X3)-

p(X5| X1, X3)p(Xe|Xa)p(X7| X4, X5)

o
X6




Directed — Bayesian Networks

Compact representation for a joint probability distribution

Bayes Net = Directed Acyclic Graph (DAG) + Conditional
Probability Tables (CPTs)

distribution factorizes according to graph
%= (K. Xi)

K
p(x) = | [ p(xxlpay)

l:f‘l_ ﬂ S;ore/\l‘ "j mo'ﬂ-k

= distribution satisfies local Markov assumption

e

Xy is independent of its non-descendants

given its parents pa,

L7



Bayesian Networks Example

Suppose we know the following: @
— The flu causes sinus inflammation
— Allergies cause sinus inflammation y

— Sinus inflammation causes a runny nose
— Sinus inflammation causes headaches

\
Causal Network He

Local Markov Assumption: If you have no sinus infection, then
flu has no influence on headache (flu causes headache but
only through sinus)



Markov independence assumption

Local Markov Assumption: A variable X is independent of its
non-descendants given its parents (only the parents)

parents non-desc assumption @
\
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Markov independence assumption

Local Markov Assumption: A variable X is independent of its non-
descendants given its parents (only the parents)

Joint distribution:

P(F, A, S, H, N)

= P(F) P(A|F) P(S|F,A) P(H|S,FA) PIN|S, A H)

Chain rule
= P(F) P(A) P(S|F,A) P(H|S) P(N]S)

Markov Assumption ¥ .

FLA, HL{FA}S, NL{FAH}S
o ——



Bayesian Network - ingredients

* Discrete variables X, ..., X,
e Directed Acyclic Graph (DAG)
— Defines parents of X, Pay :2 /QA‘>
* CPTs (Conditional Probability Tables) ﬂ
— P(X;| Pay;) pO)- ﬁ- ',(;(;\pauc:\)
id

® O

(S

a
E.g. X. =S, Pa,; = {F, A}
F=f, A=f F=t, A=f F=f A=t  F=t A=t
S=t 0.9 _ 0.8 - 0.7 - 0.3 ~
S=f 0.1 - 0.2 - 03 - 0.7

/
n variables, K values, max d parents/node  O(nK x Kd)



Two (trivial) special cases

Fully disconnected graph
Xi

parents: ¢

(%)

non-descendants: Xy, ..., X 4,
Xiy1yeee) X

n

X L Xp,oes X g Xepgyeees X

Fully connected graph
(X,
[\F

@
Xy

parents: Xy, ..., Xi;

X.

non-descendants: ¢

No independence

/

assumption



Bayesian Networks Example

* Naive Bayes Xi L Xq,000, Xi 1, Xip g0 X |Y

a P(X4,...,.X,Y) =
P(Y)P(X;]Y)...P(X;]Y)
ORORBORNC

T T _
Sq S, Sti St p({St}t=1,10t}1=1) =

T T
p(S1) [ [ p(SilSi—1) | [ p(O115:)
O, 0, Or; § Of =2 =1

pd rd = —




Explaining Away

Local Markov Assumption: A variable X is independent of its non-
descendants given its parents (only the parents)

FLA P(F|A=t) = P(F)
FLA|S? |
P(F| At S=t) = P(F|s=t)p T\

P(F=t|S=t) is high,
but P(F=t|A=t,S=t) not as high
since A =t explains away S=t

Infact, P(F=t | A=t,S=t) < P(F=t|S=t)

FLA|IN? No!

=

e

e



Independencies encoded in BN

 We said: All you need is the local Markov assumption
— (X, L NonDescendantsy; | Pay;) —

 But then we talked about other (in)dependencies
— e.g., explaining away

 What are the independencies encoded by a BN?
— Only assumption is local Markov

— But many others can be derived using the algebra of
conditional independencies!!!



D-separation

 ais D-separated frombbyc=a_lb]| c
 Three important configurations

TP (D= ® <

Causal directiona L b|c

Common cause a L b|c

FYAIS
%f\j-structu re @ @ @ v @
(Explaining away) \ / W
a Xb]/c é



D-separation

- L4

« A, B, C- non-intersecting set of nodes
e AisD-separated fromBbyC=A 1L B|C

if all paths between nodes in A & B are “blocked” -
i.e. path contains a node z such that either
N\
Z > < Z >
(2)— (-
andzin C, OR

and neither z nor any of its descendants is in C.



D-separation Example

A is D-separated from B by C if every path between A and B contains
a node z such that either

>
>@ ” > € @ - > Andzin C
or >@< And neither z nor its descendants are in C
alb|f?

Yes, Considerz=forz=-e

alb|c?
No, Considerz=e

> Poll






