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Directed — Bayesian Networks

Compact representation for a joint probability distribution

Bayes Net = Directed Acyclic Graph (DAG) + Conditional
Probability Tables (CPTs)

distribution factorizes according to graph
K
pIx) = Hl"(.-’»'l\-|l’“k)
k=1

= distribution satisfies local Markov assumption

e

X, is independent of its non-descendants
given its parents pa,
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Independencies encoded by BN

Set of distributions that factorize according to the graph
= satisfy local Markov assumption

Set of distributions that respect conditional independencies
implied by d-separation properties of graph —@




D-separation
cde d padeo

/AN
* A, B, C—non-intersecting set of nodes

e AisD-separated fromBbyC=A 1L B|C
if all paths between nodes in A & B are “blocked”
i.e. path contains a node z such that either
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and zFi/n_C, OR

O

and neither z nor any of its descendants is in C.
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Representation Theorem

* Set of distributions that factorize according to the graph -E\
s

* Set of distributions that respect conditional independencies
implied by d-separation properties of graph —@ e

I ©= F

Important because: Given independencies of P can get BN structure G

I & F

Important because: Read independencies of P from BN structure G
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Markov Blanket

POk Xp) = T{F()‘ﬂ Pa(ﬁu)}

* Conditioning on the Markov Blanket, node i is independent of
all other nodes.

(@1, ,2)?  Tleplarlpalar)? = p(x;|MB(x,))

. . T 4 —
= PXilX(jzi})= S op(zy,.x,) S 1L p(zrlpalar)) 2

vt - < R
_ (k,% - \’(A.B)

Only terms that remain are the

ones which involve i

p(xilpa(z;))  p(zrlpa(zr) 3 i)

S
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* Markov Blanket of node i - Set of parents, children and co-

parents of node i T




Directed — Bayesian Networks

Graph encodes local independence assumptions (local Markov

Assumptions) -

Other independence assumptions can be read off the graph

using d-separation
distribution factorizes according to graph = distribution
satisfies all independence assumptions found by d-separation

F & 1T

Does the graph capture all independencies? Yes, for almost all
distributions that factorize according to graph. More in 10-708




Topics in Graphical Models

* Representation

— Which joint probability distributions does a graphical
model represent?

o

* Inference pFAs, N, )

— How to answer questions about the joint probability
distribution?
g @
e Marginal distribution of a node variable - S AEE &

* Most likely assignment of node variables
— P(E=11S=D

* Learning

— How to learn the parameters and structure of a graphical
model?



Inference

* Possible queries:
1) Marginal distribution e.g. P(S)
Posterior distribution e.g. P(F|H=1)

2) Most likely assignment of nodes H
arg max P(F=f,A=a,S=s,N=n|H=1)

fa,s,n

- o -

e



Inference
P(FA, YA

: l
* Possible queries: rogad , p(sd, PIEHD,- -

1) Marginal distribution e.g. P(S) @

Posterior distribution e.g. P(F|H=1)
_

P(F|H=1) ? @

_ P(F H=1)
~ S P(F=f,H=1)
f-

oc P(F, H=1) _-  will focus on computing this, posterior will
_— follow with only constant times more effort



Marginalization

Need to marginalize over other vars

N lerg
P(S) =5 P(f,a,S,n,h)

fa,n,h

’__/‘-———
P(F,H=1) =5 P(F,a,s,n,H=1) @

a,s,n
\-q-"

23 terms

Inference seems exponential in number of variables!
Actually, inference in graphical models is NP-hard ®

®

To marginalize out n binary variables,
need to sum over 2" terms



Bayesian Networks Example
Alternator FanQelt ) LQ BQwAge

b 4

(@)
Charge BQwState

18 binary attributes

* |Inference

O i " O — P(BatteryAge | Starts=f)
Lights atteryPower asinTan o
¢Raq: Ggp(:augo

Starter Lea%

5

need to sum over 21° terms!

EngineCranks

Not impressed?

8 . — HailFinder BN — more
th?’ump @rts 4 than 354 —
DQMO, ‘ 58149737003040059690
390169 terms

SparkPlugs



Fast Probabilistic Inference

P(F,I:Iil) =5 P(\Iza,s,n,H=i) .
;E_P(F)P(a)P(slF,a)Pm_l_E)P(H=1|s)
= P(F) % P(a) § P(s|F,a)P(H=1]s) % P(n[s)

Push sums in as far as possible He

. . . /—,M /_—\'
Distributive property: X;z + X,z = z(X;+X,)

2 multiply 1 mulitply




Fast Probabilistic Inference

PIEH=1) = 3 P(Fa,s,n H=1) @
:’Sz’nP(F)P(a)P(SIF,a)P(n|S)P(H=1|5) @ /‘
=P(F) 2 Pl@) 3 P(s|F,a)P(H=1]s) E/P(n/lg)
= P(F) 3 P(a) 3 P(s|Fa)P(H=1]s) ‘ ‘

= P(F) g P(a) g:(F.a)

2nvs. n 2k multiplies
= P(F) g,(F) k - scope of (number of
- variables in) largest factor

(Potential for) exponential reduction in computation



Fast Probabilistic Inference —
Variable Elimination

P(FH=1) = ZP(F)P(a)P(lea)P(nls)P(H 1]s) @
b 5 Pla) 3 PisIFa)P(H=1]s) yﬂ S)

P(H=1|F,a)
)
1

P(H=1|F)

(Potential for) exponential reduction in computation



Variable Elimination — Order can
make a HUGE difference

P(F,H=1) =a§rI]3(F)P(a)P(s|F,a)P(nIs)P(H=1|s) @
(e 3 P(a) 3 PlsIFalP(H=1]5) 3 PIA] 2)@ /.
| | P(H=1'|F,a)' |
p(H=1 )

{D(F,H=1) P(F)ZP(a)ZZP(s|Fa)P(n|s)P(H 1|s) .

|
g(Fa,n) 3 - scope of largest factor

(Potential for) exponential reduction in computation!



Variable Elimination — Order can
make a HUGE difference

0 Naive Eeqee
P(X)) = Y,  PMPXY)]]PXIY)
s Y. X2, Xy e =2 —
= Y PMPXIY)][][PXiY)D) P(X,]Y)
Y.Xs.... X i=3 Ko - 1 - scope of
g(Y) largest factor
= ) > POPXY) [ PXIY)
Xo,oXn ¥ i=2 J n - scope of

g'(Xl,Xz,..,Xn) & largest factor



Variable Elimination Algorithm

Given BN — DAG and CPTs (initial factors — p(x;| pa;) for i=1,..,n)
Given Query P(X|e) = P(X,e)© X -—set of variables e - evidence

—

Instantiate evidence e e.g.set H=1 IMPORTANTII | «—

Choose an ordering on the variables e.g., Xy, ..., X,
Fori=1ton,If X; ¢{X,e} (i.e. need to marginalize it out)
— Collect factors gy,...,g, that include X,

— Generate a new factbr by eliminating X;; from these factors

Z H 9j
X; =1
— Variable X, has been eliminated!

— Remove g,,...,8, from set of factors but add g
Normalize P(X,e) to obtain P(X|e) -



Complexity for (Poly)tree graphs

L Lo 4
AIteOrnator Fa@elt 7 Le@ BQwAge

Variable elimination order:

¥ ISQ * Consider undirected version
\ charge K BatferyState (ignore edge directions)
C " Q§ e Start from “leaves” up &«
LQ: BatteryRower GasinTank * find topological order <
K ] e, * eliminate variables in that
order
(D Staorter ) b LQ‘?H
EngineCranks Does not create any factors ,
. bigger than original CPTs
% FQPump Qﬁs ) )
For polytrees, inference is
oQibutor g linear in # variables (vs.

X SparkPlugs exponenTial |n gener'al)!



Complexity for graphs with loops

* Loop —undirected cycle

Linear in # variables but exponential in size of largest factor
generated!

Smoking Moralize

, . graph
Tuberculosis Cgr Bgchltls I:"> Tubercule

(connect parents

into a clique
xg Dvs.p; . & drop direction § 1 Nhea
of all edges)

— When you eliminate a variable, add edges between its neighbors



Complexity for graphs with loops

* Loop —undirected cycle @
O Var eliminated Factor generated

S gl(CIB) 4\

XRay Dyspnea

X ‘?)( T j,((,o) =
o,

Linear in # variables but exponential in size of largest factor
generated ~ tree-width (max clique size-1) in resulting graph!



Example: Large tree-width with small
number of parents

At most 2 parents per node, but tree width is O(Vn)

Compact representation =/ Easy inference ®



Choosing an elimination order

Choosing best order is NP-complete

— Reduction from MAX-Clique

Many good heuristics (some with guarantees)
Ultimately, can’t beat NP-hardness of inference

— Even optimal order can lead to exponential variable
elimination computation

In practice
— Variable elimination often very effective

— Many (many many) approximate inference approaches
available when variable elimination too expensive



7 HS) ﬂf,‘;";?o Inference

* Possible queries:
2) Most likely assignment of nodes
arg max P(F=f,A=a,S=s,N=n|H=1)

fa,s,n

Use Distributive property: H
max(xlz xzz) =7 max(xl,xz)
2 mul’nply { muh‘rply

—

®



Topics in Graphical Models

* Representation

— Which joint probability distributions does a graphical
/ model represent?

 |nference

— How to answer questions about the joint probability
distribution?
/ * Marginal distribution of a node variable
* Most likely assignment of node variables

* Learning

— How to learn the parameters and structure of a graphical
model?



Learning

x.._—(j) > | CPTs —
P(X;| Pay;)
structure Pa rameters

— =

Given set of m independent samples (assignments of random
variables),

find the best (most likely?) Bayes Net (graph Structure + CPTs)



Learning the CPTs (given structure)

Cona

x(1)

x(m)

For each discrete variable X,

Compute MLE or MAP estimates for
geeph

plag |1)::1 L) Bo 9,,%\

.

Recall Vs
COUﬂt(XZ' = CBZ',Xj = CBJ)

MLE: P(X;=uz;| X;=1z;) = Count(X; = z;)
j=

MAP: Add psuedocounts




MLEs decouple for each CPT in Bayes
Nets

* Given structure, log likelihood of data Q /@D

log P(D | eg,g) /@>\

09 H P PP P Pl ® ©

7=
-

3" [fog P(J”5+|og P(d)+1og P& +10g PR H+10g P )
j=1
2

log P(f(ﬂ)+ i log P(a(g-l— i log P(3fra I+

L ] j | ]
Y Y Y

(i) (i m

Depends 0, 0,4 s A i log P(h|sﬁ—|— > log P(7(1j a(S%]

only on =1  g=1 ' |

Y
eH|s eN|s

Can computer MLEs of each parameter independently!




Information theoretic interpretation
of MLE

exorles / [Freivieg daler
MJU ’W“aua
mo N (4) (4)
log P(D | 0g,9) = Z Z 09P< i = | Pay -—Xan)
- B j: :
As -
n
=Y 3 ¥ count(X; =a;, Pax, = xpay,) 10g P (X; = z; | Pay, = xpay)
i=1 Ti XPay, — —
- M 2 = ‘MP(X{/XPM;)

Plugging in MLE estimates: ML score ¢ o 9"’1’8“““‘ ' ‘ 6’:5

m n

log P(D | 6g,6) = > Y log P (w,fj) | X.(:‘QX.) \)
- - - — = ?
3—17::—
=m ;4 P ;J ﬁ(xi’XPaXi) log ﬁ (xz | Xani)

i=1 Ti XPay.
Reminds of entropy



Information theoretic interpretation
of MLE

log P(D | Qg,g> =m Y Y S‘ P('rZ?XPaX ) |09P(xz | XPaX)

1=1 Tj XPaX

n

i=1 —

Doesn’t depend on graph structureg

T eEeee——

ML score for graph structure §

arg mggxlog P(D | Hg, g) = arg maXZI X;, Paxy;, )
1=1



