
Topics in Graphical Models
• Representation
– Which joint probability distributions does a graphical 

model represent?

• Inference
– How to answer questions about the joint probability 

distribution?
• Marginal distribution of a node variable
• Most likely assignment of node variables

• Learning
– How to learn the parameters and structure of a graphical 

model?



Max Likelihood score for graph structure

ML score for graph structure

Doesn’t depend on graph structure 



ML score is Decomposable

• Log data likelihood

• Decomposable score:
– Decomposes over families in BN (node and its parents)
– Will lead to significant computational efficiency!!!



How many trees are there?

• Trees – every node has at most one parent
• nn-2 possible trees (Cayley’s Theorem)

Nonetheless – Efficient optimal algorithm finds best tree!



Scoring a tree

A B C

Equivalent Trees (same score):   I(A,B) + I(B,C)

A B C A B C

Score provides indication of structure:
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Chow-Liu algorithm

• For each pair of variables Xi,Xj
– Compute empirical distribution:
– Compute mutual information:

• Define a graph
– Nodes X1,…,Xn

– Edge (i,j) gets weight

• Optimal tree BN
– Compute maximum weight spanning tree (e.g. Prim’s, Kruskal’s

algorithm O(nlog n))
– Directions in BN: pick any node as root, breadth-first-search defines 

directions



Chow-Liu algorithm example
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Scoring general graphical models

• Graph that maximizes ML score -> complete graph!
• Information never hurts

H(A|B) ≥ H(A|B,C)

• Adding a parent always increases ML score
I(A,B,C) ≥ I(A,B)

• The more edges, the fewer independence assumptions, the 
higher the likelihood of the data, but will overfit…

• Why does ML for trees work? 
Restricted model space – tree graph



Regularizing

• Model selection 
– Use MDL (Minimum description length) score
– BIC score (Bayesian Information criterion)

• Still NP –hard
Theorem: The problem of learning a BN structure with at 
most d parents is NP-hard for any (fixed) d>1 (Note: tree d=1)

• Mostly heuristic (exploit score decomposition)
• Chow-Liu: provides best tree approximation to any 

distribution. 
• Start with Chow-Liu tree. Add, delete, invert edges. Evaluate 

BIC score



What you should know

• Learning BNs
– Maximum likelihood or MAP learns parameters
– ML score 
• Decomposable score
• Information theoretic interpretation (Mutual 

information)

– Best tree (Chow-Liu)
– Other BNs, usually local search with BIC score
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Unsupervised Learning

Aka Learning without labels

Ø Learning and inference using probability distributions & 
densities

MLE/MAP
Graphical models

Ø Dimensionality Reduction 

Ø Clustering



Dimensionality Reduction
PCA
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• High-Dimensions = Lot of Features

Document classification
Features per document = 

thousands of words/unigrams
millions of bigrams, contextual 
information

Surveys - Netflix
480189 users x 17770 movies

3

High-Dimensional data



• High-Dimensions = Lot of Features

High resolution images
millions of pixels

Diffusion scans of Brain 
300,000 brain fibers
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High-Dimensional data



• Why are more features bad?

– Redundant features (not all words are useful to classify a document)
more noise added than signal

– Hard to interpret and visualize

– Hard to store and process data (computationally challenging)

– Complexity of decision rule tends to grow with # features. Hard to learn 
complex rules as it needs more data (statistically challenging)

5

Curse of Dimensionality



• Feature Selection – Only a few features are relevant to the learning task

• Latent features – Some linear/nonlinear combination of features provides a 
more efficient representation than observed features
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Dimensionality Reduction

X1
X2

X3
X3 - Irrelevant
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Latent Features
Combinations of observed features provide more efficient representation, and 
capture underlying relations that govern the data

E.g.  Ego, personality and intelligence are hidden attributes that characterize  
human behavior instead of survey questions
Topics (sports, science, news, etc.) instead of documents

Often may not have physical meaning

• Linear
Principal Component Analysis (PCA)
Factor Analysis
Independent Component Analysis (ICA)

• Nonlinear
Kernel PCA

Laplacian Eigenmaps,  ISOMAP, LLE
Autoencoders
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Principal Component Analysis (PCA)

When data lies on or near a low d-dimensional linear subspace, axes of 
this subspace are an effective representation of the data

Identifying the axes is known as Principal Components Analysis, and 
can be obtained by Eigen or Singular value decomposition



Data for PCA
Data X =  [x1, x2, …, xn] where each data point xi is D-dimensional vector

X is D x n matrix

Assume data are centered i.e. sample mean

What if data is not centered? 
Subtract off sample mean from each data point

Since data matrix is centered, sample covariance matrix can be written as

1

n

nX

i=1

xi = 0
<latexit sha1_base64="4EJo6/CIzuXG8afu05OqV2y3Scw=">AAACBnicbVDLSsNAFJ3UV62vqEsRBovgqiRV0E2h6MZlBfuANobJdNIOnZmEmYlYQlZu/BU3LhRx6ze482+ctllo64ELh3Pu5d57gphRpR3n2yosLa+srhXXSxubW9s79u5eS0WJxKSJIxbJToAUYVSQpqaakU4sCeIBI+1gdDXx2/dEKhqJWz2OicfRQNCQYqSN5NuHvVAi7KYi66mE3wk/pTU3gw8+hTXo+HbZqThTwEXi5qQMcjR8+6vXj3DCidCYIaW6rhNrL0VSU8xIVuolisQIj9CAdA0ViBPlpdM3MnhslD4MI2lKaDhVf0+kiCs15oHp5EgP1bw3Ef/zuokOL7yUijjRRODZojBhUEdwkgnsU0mwZmNDEJbU3ArxEJlctEmuZEJw519eJK1qxT2tVG/OyvXLPI4iOABH4AS44BzUwTVogCbA4BE8g1fwZj1ZL9a79TFrLVj5zD74A+vzB+jvmBg=</latexit>

xi

S =
1

n
XX>

<latexit sha1_base64="XT9u/gRsTrju9vNsK/Ca2AWrK7o="></latexit>
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Principal Component Analysis (PCA)

Principal Components (PC) are orthogonal 
directions that capture most of the variance 
in the data

1st PC – direction of greatest variability in 
data

Projection of data points along 1st PC 
discriminate the data most along any one 
direction

Take a data point xi (D-dimensional vector)

Projection of xi onto the 1st PC v is vTxi

1s
t PC

xi v
vTxi
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Principal Component Analysis (PCA)

Principal Components (PC) are orthogonal 
unit norm directions that capture most of 
the variance in the data

1st PC – direction of greatest variability in 
data

2nd PC – Next orthogonal (uncorrelated) 
direction of greatest variability

(remove all variability in first direction, then 
find next direction of greatest variability)

And so on …

1s
t PC

2 ndPC

xi

vTxi

xi-(vTxi)v
v
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Principal Component Analysis (PCA)
Let v1, v2, …, vd denote the principal components

Orthogonal and unit norm      viT vj = 0    i ≠ j

viT vi = 1 

Find vector that maximizes sample variance of projection

xi v
vTxin

Poll:

Ø Is this a convex optimization problem?



13

Principal Component Analysis (PCA)
Let v1, v2, …, vd denote the principal components

Orthogonal and unit norm      viT vj = 0    i ≠ j

viT vi = 1 

Find vector that maximizes sample variance of projection

Wrap constraints into the 
objective function

xi v
vTxin




