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Principal Component Analysis (PCA)

Principal Components (PC) are orthogonal 
unit norm directions that capture most of 
the variance in the data

1st PC – direction of greatest variability in 
data

2nd PC – Next orthogonal (uncorrelated) 
direction of greatest variability

(remove all variability in first direction, then 
find next direction of greatest variability)

And so on …
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Principal Component Analysis (PCA)
Let v1, v2, …, vd denote the principal components

Orthogonal and unit norm      viT vj = 0    i ≠ j

viT vi = 1 

Find vector that maximizes sample variance of projection

xi v
vTxin

Poll:

Ø Is this a convex optimization problem?
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Principal Component Analysis (PCA)
Let v1, v2, …, vd denote the principal components

Orthogonal and unit norm      viT vj = 0    i ≠ j

viT vi = 1 

Find vector that maximizes sample variance of projection

Wrap constraints into the 
objective function

xi v
vTxin
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Principal Component Analysis (PCA)

Sample variance of projection = 

Thus, the eigenvalue λ denotes the amount of variability captured along 
that dimension (aka amount of energy along that dimension).

Eigenvalues λ1 > λ2 > λ3 > … 

The 1st Principal component v1 is the eigenvector of the sample covariance 
matrix XXT associated with the largest eigenvalue λ1

The 2nd Principal component v2 is the eigenvector of the sample covariance 
matrix XXT associated with the second largest eigenvalue λ2

And so on …

Therefore, v is the eigenvector of sample covariance 
matrix XXT
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Another interpretation
Maximum Variance Subspace: PCA finds vectors v such that projections on to the 
vectors capture maximum variance in the data

Minimum Reconstruction Error: PCA finds vectors v such that projection on to the
vectors yields minimum MSE reconstruction 
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Another interpretation

Minimum Reconstruction Error: PCA finds vectors v such that projection on to the
vectors yields minimum MSE reconstruction 
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Poll:

Ø Is the 1st PC same as the linear least square fit?
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Dimensionality Reduction using PCA

The eigenvalue λ denotes the amount of variability captured along 
that dimension.

Zero eigenvalues indicate no variability along those directions => 
data lies exactly on a linear subspace

Only keep data projections onto principal components with non-
zero eigenvalues, say v1, …, vd where d = rank (XXT)

Original Representation Transformed representation
data point projections

xi = [xi1, xi2, …. xiD]T [v1Txi, v2Txi, … vdTxi]
(D-dimensional vector) (d-dimensional vector)

xi v
vTxi
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Dimensionality Reduction using PCA
In high-dimensional problem, data usually lies near a linear subspace, as 
noise introduces small variability

Only keep data projections onto principal components with large eigenvalues

Can ignore the components of lesser significance. 

You might lose some information, but if the eigenvalues are small, you don’t lose 
much
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Variance (%) = ratio of variance along given 
principal component to total variance of all 
principal components 







Example: MNIST digits

• 28x28 images = 784 PCA vectors
• Project to K dimensional space and then project back up



Projecting MNIST digits



Projecting MNIST digits
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Unsupervised Dimensionality 
Reduction

• Linear
Principal Component Analysis (PCA)
Factor Analysis
Independent Component Analysis (ICA)



16

Unsupervised Dimensionality 
Reduction

• Linear
Principal Component Analysis (PCA)
Factor Analysis
Independent Component Analysis (ICA)

• Nonlinear
Kernel PCA
Laplacian Eigenmaps,  ISOMAP, LLE
Autoencoders



Kernel PCA
Latent features: linear in f(x) where f(x). f(x’) = K(x,x’) that capture 
maximum variance or minimum reconstruction error

Original data points PCA

Src: ArXiv 1207.3538

Kernel PCA
Gaussian/RBF kernel



Kernel PCA
Latent features: linear in f(x) where f(x). f(x’) = K(x,x’) that capture 
maximum variance or minimum reconstruction error

PCA: 

Top d eigenvectors (each D dimensional) of sample covariance XXT

Low d-dimensional embedding of a point: 

Kernel PCA:

Top d eigenvectors (each n dimensional) of kernel matrix K(X,X) 

Low d-dimensional embedding of a point:   [v1(i), v2(i), …, vd(i)]

[v1Txi, v2Txi, … vdTxi]

Eigenvectors are not PCs but projections of data points



PCA Summary
• PCA finds latent features linear in original features x that capture

– Maximum variance amongst all linear features
– Minimum reconstruction error when recovering points from PC 

projections

• Non-convex problem with simple solution: 
PCs = eigenvectors of sample covariance matrix
Lower (d < D) dimensional embedding of data point = 
projection of data point onto d PCs

• Kernel PCA: latent features linear in f(x) where f(x). f(x’) = K(x,x’) 
that capture maximum variance  or minimum reconstruction error
– Directly get projections of data points
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What is clustering?
• Clustering: the process of grouping a set of objects into classes of similar 

objects
– high intra-class similarity
– low inter-class similarity
– It is the most common form of unsupervised learning
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What is Similarity?

• The real meaning of similarity is a philosophical question. We will take a 
more pragmatic approach - think in terms of a distance (rather than 
similarity) between vectors or correlations between random variables.

Hard to 
define! But we 
know it when 
we see it



Distance metrics
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x = (x1, x2, …, xp)
y = (y1, y2, …, yp)

p = 2

5

7

4

Euclidean distance

Manhattan distance

Sup-distance



Correlation coefficient
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Pearson correlation coefficient

x = (x1, x2, …, xp)
y = (y1, y2, …, yp)

Random vectors (e.g. expression levels
of two genes under various drugs)

 

r -ve

r +ve
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Clustering Algorithms

• Partition algorithms
• K means clustering
• Mixture-Model based clustering

• Hierarchical algorithms
• Single-linkage
• Average-linkage
• Complete-linkage
• Centroid-based
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Partitioning Algorithms

• Partitioning method: Construct a partition of n objects into a 
set of K clusters

• Given: a set of objects and the number K

• Find: a partition of K clusters that optimizes the chosen 
partitioning criterion
– Globally optimal: exhaustively enumerate all partitions
– Effective heuristic method: K-means algorithm
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K-Means
Algorithm
Input – Desired number of clusters, k

Initialize – the k cluster centers (randomly if necessary)

Iterate –

1. Assign points to the nearest cluster centers

2. Re-estimate the k cluster centers (aka the centroid or mean), by assuming 
the memberships found above are correct.

Termination –
If none of the objects changed membership in the last iteration, exit. 
Otherwise go to 1.
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K-means Clustering: Step 1

Voronoi
diagram
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K-means Clustering: Step 2
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K-means Clustering: Step 3
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K-means Clustering: Step 4
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K-means Clustering: Step 5



K-means Recap …



K-means Recap …

Iterate t = 0, 1, 2, …



K-means Recap …

S:

Iterate t = 0, 1, 2, …



What is K-means optimizing?

=

Ø Is the K-means objective convex?



K-means algorithm

K-means algorithm: (coordinate descent on F)

(1)

(2)

Expected cluster assignment

Maximum likelihood for center

Similar to EM/Baum Welch algorithm for learning 
HMM parameters


