Principal Component Analysis (PCA) $\chi_{\mathbb{F}}[\chi_{\mathbb{F}}) \xrightarrow{\mathcal{F}} \chi_{\mathbb{F}} \xrightarrow{\mathcal{F}} \chi_{\mathbb{F}}$

Principal Components (PC) are orthogonal unit norm directions that capture most of the variance in the data

1st PC – direction of greatest variability in data

2nd PC – Next orthogonal (uncorrelated) direction of greatest variability

(remove all variability in first direction, then find next direction of greatest variability)

And so on ...

D - d ccD **Principal Component Analysis (PCA)** Let v1, v2, ..., vd denote the principal components Orthogonal and unit norm $v_i^T v_j = 0$ i $\neq j \checkmark$ $v_i^T v_i = 1$ Find vector that maximizes sample variance of projection dx1 $V E[2^{2}]$ $V^{T}X_{i} E[(2-\varepsilon_{2})]$ Val(2) $V = \frac{1}{2}$ $\frac{1}{n} \sum_{i=1}^{n} (\mathbf{v}^T \mathbf{x}_i)^2 = \underline{\mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v}}_{\mathbf{n}}$ $\max_{\mathbf{v}} \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v} \quad \text{s.t.} \quad \mathbf{v}^T \mathbf{v} = 1$ J ZVi=1 Non-convex set Poll: (onvex z'M2 30 Is this a convex optimization problem?

Principal Component Analysis (PCA)

Let $v_1, v_2, ..., v_d$ denote the principal components

Orthogonal and unit norm $v_i^T v_j = 0$ $i \neq j$

$$v_i^T v_i = 1$$

Find vector that maximizes sample variance of projection

$$D=2$$

$$d=1$$

$$\frac{1}{n} \sum_{i=1}^{n} (\mathbf{v}^{T} \mathbf{x}_{i})^{2} = \frac{\mathbf{v}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{v}}{n}$$

$$\max_{\mathbf{v}} \mathbf{v}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{v} \quad \text{s.t.} \quad \mathbf{v}^{T} \mathbf{v} = 1$$

$$\text{Lagrangian: } \max_{\mathbf{v}} \mathbf{v}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{v} - \lambda \mathbf{v}^{T} \mathbf{v}$$

$$\frac{2 \times \mathbf{x}^{T} \mathbf{v} - 2\lambda \mathbf{v} = 0}{(\mathbf{X} \mathbf{X}^{T} - \lambda \mathbf{I}) \mathbf{v} = 0}$$

$$\frac{\sqrt{\mathbf{X} \mathbf{X}^{T} \mathbf{v}}{\mathbf{v}} = \lambda \mathbf{v} = \frac{\sqrt{\mathbf{x} \mathbf{X}^{T} \mathbf{v}}{\mathbf{v}} = \lambda \mathbf{v}}{\mathbf{v} = \frac{\sqrt{\mathbf{x} \mathbf{x}^{T} \mathbf{v}}{\mathbf{v}}} = \frac{\sqrt{\mathbf{x} \mathbf{x}^{T} \mathbf{v}}{\mathbf{v}} = \frac{\sqrt{\mathbf{x} \mathbf{x}^{T} \mathbf{v}}{\mathbf{v}}}{\mathbf{v} = \frac{\sqrt{\mathbf{x} \mathbf{v}}{\mathbf{v}}}{\mathbf{v} = \frac{\sqrt{\mathbf{v} \mathbf{v}}{\mathbf{v}}}}$$

$$\frac{\sqrt{\mathbf{v} \mathbf{v} \mathbf{v}}{\mathbf{v} \mathbf{v}} = 0$$

$$\frac{\sqrt{\mathbf{v} \mathbf{v}}{\mathbf{v} \mathbf{v}} = \sqrt{\mathbf{v} \mathbf{v}} = \frac{\sqrt{\mathbf{v} \mathbf{v}}{\mathbf{v}}}{\mathbf{v} \mathbf{v} \mathbf{v}} = \frac{\sqrt{\mathbf{v} \mathbf{v}}{\mathbf{v}}}{\mathbf{v} \mathbf{v} \mathbf{v}} = \frac{\sqrt{\mathbf{v} \mathbf{v}}{\mathbf{v}}}{\mathbf{v} \mathbf{v} \mathbf{v}} = \frac{\sqrt{\mathbf{v} \mathbf{v}}{\mathbf{v}}}{\mathbf{v} \mathbf{v}}}$$

Principal Component Analysis (PCA) 1) center \times 2) Somple con $\times \times \times$ $(XX^T)v = \lambda v$

Therefore, v is the eigenvector of sample covariance matrix XX^T

Sample variance of projection = $\mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v} = \lambda \mathbf{v}^T \mathbf{v} = \lambda$

Thus, the eigenvalue λ denotes the amount of variability captured along that dimension (aka amount of energy along that dimension).

Eigenvalues $\lambda_1 > \lambda_2 > \lambda_3 > \dots$

The 1st Principal component v₁ is the eigenvector of the sample covariance matrix XX^T associated with the largest eigenvalue λ_1

The 2nd Principal component v₂ is the eigenvector of the sample covariance matrix XX^T associated with the second largest eigenvalue λ_2

And so on ...

Another interpretation

Maximum Variance Subspace: PCA finds vectors v such that projections on to the vectors capture maximum variance in the data

$$\frac{1}{n}\sum_{i=1}^{n} (\mathbf{v}^T \mathbf{x}_i)^2 = \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v}$$

Minimum Reconstruction Error: PCA finds vectors v such that projection on to the vectors yields minimum MSE reconstruction

$$\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_{i} - (\mathbf{v}^{T} \mathbf{x}_{i}) \mathbf{v}\|^{2}$$

$$t \quad \underbrace{\mathbf{x}_{i}}_{\mathbf{x}_{i}} \quad \underbrace{\mathbf{x}_{i}}_{\mathbf{x}_{i}} \quad \underbrace{\mathbf{x}_{i}}_{\mathbf{x}_{i}} \quad \underbrace{\mathbf{v}}_{\mathbf{x}_{i}} \quad \underbrace{\mathbf{x}_{i}}_{\mathbf{y}} \quad \underbrace{\mathbf{v}}_{\mathbf{x}_{i}} \quad \underbrace{\mathbf{x}_{i}}_{\mathbf{y}} \quad \underbrace{\mathbf{v}}_{\mathbf{x}_{i}} \quad \underbrace{\mathbf{v}}_{\mathbf{y}} \quad \underbrace{\mathbf{v}}_{\mathbf{$$

· · /· ·T· · ··

$$argmin_{V} = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i} - (\mathbf{v}^{T}\mathbf{x}_{i})\mathbf{v}||^{2} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i} - (\mathbf{v}^{T}\mathbf{x}_{i})\mathbf{v})^{T} (\mathbf{x}_{i} - (\mathbf{v}^{T}\mathbf{x}_{i})\mathbf{v})$$

$$= \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{T}\mathbf{x}_{i} - 2(\mathbf{v}^{T}\mathbf{x}_{i})^{T} + \mathbf{v}^{T} (\mathbf{v}^{T}\mathbf{x}_{i})^{T} \mathbf{v}$$

$$= \arg \min_{V} \frac{1}{n} \sum_{i=1}^{n} (\mathbf{v}^{T}\mathbf{x}_{i})^{T}$$

$$= \arg \max_{V} \frac{1}{n} \sum_{i=1}^{n} (\mathbf{v}^{T}\mathbf{x}_{i})^{T}$$

Another interpretation

Minimum Reconstruction Error: PCA finds vectors v such that projection on to the vectors yields minimum MSE reconstruction

➢ Is the 1st PC same as the linear least square fit?

Dimensionality Reduction using PCA $\chi \chi^{\tau} {}_{D \times D} \rightarrow V_{1} \cdots V_{D}$

The eigenvalue λ denotes the amount of variability captured along that dimension.

Zero eigenvalues indicate no variability along those directions => data lies exactly on a linear subspace

Only keep data projections onto principal components with nonzero eigenvalues, say $v_1, ..., v_d$ where d = rank (XX^T)

D = 2 d = 1

Original Representation data point $x_i = [x_i^1, x_i^2, \dots, x_i^D]^T$

(D-dimensional vector)

Transformed representation projections

 $[V_1^T X_i, V_2^T X_i, \dots V_d^T X_i]$ (d-dimensional vector)

Dimensionality Reduction using PCA

In high-dimensional problem, data usually lies **near** a linear subspace, as noise introduces small variability

Only keep data projections onto principal components with large eigenvalues

Can *ignore* the components of lesser significance.

Example of PCA

Eigenvectors and eigenvalues of covariance matrix for n=1600 inputs in d=3 dimensions.

D=256x256 V oxI

Example: faces

Eigenfaces from 7562 images:

top left image is linear combination of rest.

Sirovich & Kirby (1987) Turk & Pentland (1991)

Example: MNIST digits

- 28x28 images = 784 PCA vectors
- Project to K dimensional space and then project back up

Projecting MNIST digits

Unsupervised Dimensionality Reduction

• Linear

Principal Component Analysis (PCA)

Factor Analysis

Independent Component Analysis (ICA)

Unsupervised Dimensionality Reduction

Linear

Principal Component Analysis (PCA)

Factor Analysis

Independent Component Analysis (ICA)

Kernel PCA

Latent features: linear in $\phi(x)$ where $\phi(x)$. $\phi(x') = K(x,x')$ that capture maximum variance or minimum reconstruction error

Gaussian/RBF kernel

Src: ArXiv 1207.3538

Kernel PCA

Latent features: linear in $\phi(x)$ where $\phi(x)$. $\phi(x') = K(x,x')$ that capture maximum variance or minimum reconstruction error

<u>PCA</u>:

Top d eigenvectors (each D dimensional) of sample covariance XX^T Low d-dimensional embedding of a point: $[v_1^Tx_i, v_2^Tx_i, \dots v_d^Tx_i]$ dx_1 Kernel PCA: Top d eigenvectors (each n dimensional) of kernel matrix K(X,X) = XXLow d-dimensional embedding of a point: $[v_1(i), v_2(i), \dots, v_d(i)]$ Eigenvectors are not PCs but projections of data points

- PCA finds latent features linear in original features x that capture
 - Maximum variance amongst all linear features
 - Minimum reconstruction error when recovering points from PC projections
- Non-convex problem with simple solution:

PCs = eigenvectors of sample covariance matrix Lower (d < D) dimensional embedding of data point = projection of data point onto d PCs

- Kernel PCA: latent features linear in $\phi(x)$ where $\phi(x)$. $\phi(x') = K(x,x')$ that capture maximum variance or minimum reconstruction error
 - Directly get projections of data points

Clustering

Aarti Singh

Machine Learning 10-701 Apr 24, 2023

Some slides courtesy of Eric Xing, Carlos Guestrin

What is clustering?

- Clustering: the process of grouping a set of objects into classes of similar ۲ objects
 - high intra-class similarity
 - low inter-class similarity ____
 - It is the most common form of unsupervised learning

Clustering is subjective

Simpson's Family

School Employees

2

What is Similarity?

Hard to define! But we know it when we see it

 The real meaning of similarity is a philosophical question. We will take a more pragmatic approach - think in terms of a distance (rather than similarity) between vectors or correlations between random variables.

Distance metrics

Euclidean distance

$$d(x, y) = \sqrt[2]{\sum_{i=1}^{p} |x_i - y_i|^2}$$
 5 /

Manhattan distance

Sup-distance

$$d(x, y) = \sum_{i=1}^{p} |x_i - y_i|$$
7

$$d(x, y) = \max_{1 \le i \le p} |x_i - y_i|$$
 4 4

Correlation coefficient

$$x = (x_1, x_2, ..., x_p)$$

$$y = (y_1, y_2, ..., y_p)$$

$$I(X,Y)$$

Random vectors (e.g. expression levels of two genes under various drugs)

Pearson correlation coefficient

$$\rho(x, y) = \frac{\sum_{i=1}^{p} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{p} (x_i - \overline{x})^2 \times \sum_{i=1}^{p} (y_i - \overline{y})^2}}$$

where
$$\bar{x} = \frac{1}{p} \sum_{i=1}^{p} x_i$$
 and $\bar{y} = \frac{1}{p} \sum_{i=1}^{p} y_i$

Clustering Algorithms

• Partition algorithms

- K means clustering
- Mixture-Model based clustering

p(x)

- Hierarchical algorithms
 - Single-linkage
 - Average-linkage
 - Complete-linkage
 - Centroid-based

Partitioning Algorithms

- Partitioning method: Construct a partition of *n* objects into a set of *K* clusters
- Given: a set of objects and the number K

- Find: a partition of *K* clusters that optimizes the chosen partitioning criterion
 - Globally optimal: exhaustively enumerate all partitions
 - Effective heuristic method: K-means algorithm

K-Means

Algorithm

Input – Desired number of clusters, k

Initialize – the k cluster centers (randomly if necessary)

Iterate –

- 1. Assign points to the nearest cluster centers
- 2. Re-estimate the *k* cluster centers (aka the centroid or mean), by assuming the memberships found above are correct.

$$\vec{\mu}_k = \frac{1}{\mathcal{C}_k} \sum_{i \in \mathcal{C}_k} \vec{x}_i$$

Termination –

If none of the objects changed membership in the last iteration, exit. Otherwise go to 1.

9

K-means Recap ...

Randomly initialize k centers

 $\square \mu^{(0)} = \mu_1^{(0)}, \dots, \mu_k^{(0)}$

K-means Recap ...

• Randomly initialize *k* centers $\Box \ \mu^{(0)} = \mu_1^{(0)}, \dots, \ \mu_k^{(0)}$

Iterate t = 0, 1, 2, ...

Classify: Assign each point j∈ {1,...m} to nearest center:

$$\Box \ C^{(t)}(j) \leftarrow \arg \min_{i=1,...,k} \|\mu_i^{(t)} - x_j\|^2 \leftarrow$$

K-means Recap ...

• Randomly initialize *k* centers $\Box \ \mu^{(0)} = \mu_1^{(0)}, \dots, \mu_k^{(0)}$

Iterate t = 0, 1, 2, ...

Classify: Assign each point j∈ {1,...m} to nearest center:

$$\square C^{(t)}(j) \leftarrow \arg \min_{i=1,\dots,k} \|\mu_i^{(t)} - x_j\|^2 \quad \checkmark$$

Recenter: μ_i becomes centroid of its points:
 □ μ_i^(t+1) ← arg min _μ ∑_{j:C^(t)(j)=i} ||μ - x_j||² i ∈ {1,...,k}
 □ Equivalent to μ_i ← average of its points!

What is K-means optimizing?

Potential function F(µ,C) of centers µ and point allocations C:

$$F(\mu, C) = \sum_{j=1}^{m} ||\mu_{C(j)} - x_j||^2$$
$$= \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_i - x_j||^2$$

Optimal K-means:
 □ min_µmin_⊆ F(µ,C)
 ➢ Is the K-means objective convex?

K-means algorithm

- Optimize potential function: $\min_{\mu} \min_{C} F(\mu, C) = \min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_i - x_j||^2$
- K-means algorithm: (coordinate descent on F)
 - (1) Fix μ , optimize C **Expected** cluster assignment
 - (2) Fix C, optimize μ

Maximum likelihood for center

Similar to EM/Baum Welch algorithm for learning HMM parameters