Clustering contd...

Aarti Singh

Machine Learning 10-701 Apr 26, 2023

Some slides courtesy of Eric Xing, Carlos Guestrin

given

• Randomly initialize k centers $\square \mu^{(0)} = \mu_1^{(0)}, \dots, \mu_k^{(0)}$

Iterate t = 0, 1, 2, ...

Classify: Assign each point j∈ {1,...m} to nearest center:

$$\square C^{(t)}(j) \leftarrow \arg \min_{i=1,...,k} \|\mu_i^{(t)} - x_j\|^2$$

Recenter: μ_i becomes centroid of its points:

$$\begin{array}{c} \square \ \mu_i^{(t+1)} \leftarrow \arg \min_{\substack{\mu \\ \downarrow \end{pmatrix}} \sum_{j:C^{(t)}(j)=i} \|\mu - x_j\|^2 & i \in \{1, \dots, k\} \\ \blacksquare \ \text{Equivalent to } \mu_i \leftarrow \text{average of its points!} & \blacksquare \ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \blacksquare \ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal{M}_i \stackrel{\text{(t+1)}}{=} \sum_{j \notin \mathcal{C}} x_j \neq j \\ \mathcal$$

K-means algorithm

- **K-means algorithm:** (coordinate descent on F)
 - (1) Fix μ , optimize C Expected cluster assignment

(2) Fix C, optimize μ

Maximum likelihood for center

Similar to EM/Baum Welch algorithm for learning HMM parameters <u>latent</u> states = latent clucker osignment

Computational Complexity

- At each iteration,
 - Computing distance between each of the n objects and the K cluster centers is O(Kn).
 - Computing cluster centers: Each object gets added once to some cluster: O(n).
- Assume these two steps are each done once for *l* iterations:
 O(*lKn*).

• Results are quite sensitive to seed selection.

• Results are quite sensitive to seed selection.

• Results are quite sensitive to seed selection.

- Results can vary based on random seed selection.
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clustering.
 - Try out multiple starting points (very important!!!)
 - k-means ++ algorithm of Arthur and Vassilvitskii
 key idea: choose centers that are far apart
 - (probability of picking a point as cluster center \propto distance from nearest center picked so far)

Other Issues

- Number of clusters K
 - Objective function $m = \sum_{j=1}^{m} ||\mu_{C(j)} x_j||^2$? K $\mu_i C = j = 1$

Can you pick K by minimizing the objective over K?

Look for "Knee" in objective function

Other Issues

• Sensitive to Outliers

• Shape of clusters

Assumes isotropic, equal variance, convex clusters

K-means limitations

- Clusters may overlap "soft" assignment
- Some clusters may be "wider" than others
- Clusters may not be linearly separable

Partitioning Algorithms

• K-means

 hard assignment: each object belongs to only one cluster

- Mixture modeling
 - soft assignment: probability that an object belongs to a cluster

Generative approach

Mixture models

GMM – Gaussian Mixture Model (Multi-modal distribution)

Mixture models

GMM – Gaussian Mixture Model (Multi-modal distribution)

- There are k components
- Component *i* has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix Σ_i

Each data point is generated accordingto the following recipe:

1) Pick a component at random: Choose component i with probability $P(y=i) \checkmark = \int_{i=1}^{i} f_{i}^{i}$

2) Datapoint x ~ N(
$$\tilde{\mu_i}, \Sigma_i$$
)

After 1st iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

GMM clustering of assay data

K=6

Resulting Density Estimator

Three classes of assay (each learned with it's own mixture model)

Resulting Bayes Classifier

Expectation-Maximization (EM)

A general algorithm to deal with hidden data

- No need to choose step size as in Gradient methods.
- EM is an Iterative algorithm with two linked steps:
 E-step: fill-in hidden data (Y) using inference
 M-step: apply standard MLE/MAP method to estimate parameters
 {p_i, μ_i, Σ_i}^k_{i=1}
- This procedure monotonically improves the likelihood (or leaves it unchanged). Thus it always converges to a local optimum of the likelihood.

Clustering Algorithms

- Partition algorithms
 - K means clustering
 - Mixture-Model based clustering

Hierarchical algorithms

- Single-linkage
- Average-linkage
- Complete-linkage
- Centroid-based

Hierarchical Clustering

Bottom-Up Agglomerative Clustering

Starts with each object in a separate cluster, and repeat:

- Joins the most similar pair of clusters,
- Update the similarity of the new cluster to others until there is only one cluster.

Greedy - less accurate but simple to implement

- Top-Down divisive
- Starts with all the data in a single cluster, and repeat:
 - Split each cluster into two using a partition algorithm
 Until each object is a separate cluster.

More accurate but complex to implement

Bottom-up Agglomerative clustering

Different algorithms differ in how the similarities are defined (and hence updated) between two clusters

- Single-Linkage
 - Nearest Neighbor: similarity between their closest members.
- Complete-Linkage
 - Furthest Neighbor: similarity between their furthest members.
- Centroid
 - Similarity between the centers of gravity
- Average-Linkage
 - Average similarity of all cross-cluster pairs.

Single-Linkage Method

Euclidean Distance

Complete-Linkage Method

Euclidean Distance

a

b

С

Dendrograms

Another Example

Complete Link Example

Single vs. Complete Linkage

Shape of clusters

Single-linkage

allows anisotropic and non-convex shapes

Complete-linkage

assumes isotopic, convex shapes

Computational Complexity

- All hierarchical clustering methods need to compute similarity of all pairs of *n* individual instances which is O(n²).
- At each iteration,
 - Sort similarities to find largest one O(n²log n).
 - Update similarity between merged cluster and other clusters.

Computing similarity to each other cluster can be done in constant time.

So we get O(n² log n) or O(n³) (if naïvely implemented)

What you need to know...

- Partition based clustering algorithms
 - K-means 🧳
 - Coordinate descent
 - Seeding
 - Choosing K
 - Mixture models
 EM algorithm
- Hierarchical clustering algorithms
 - Single-linkage
 - Complete-linkage
 - Centroid-linkage
 - Average-linkage