Clustering contd…

Aarti Singh

Machine Learning 10-701 Apr 26, 2023

Some slides courtesy of Eric Xing, Carlos Guestrin

giver

• Randomly initialize *k* centers \Box $\mu^{(0)} = \mu_1^{(0)}, \dots, \mu_k^{(0)}$

Iterate $t = 0, 1, 2, ...$

• Classify: Assign each point $j \in \{1,...m\}$ to nearest center:

$$
\Box \quad C^{(t)}(j) \leftarrow \arg\min_{i=1,\dots,k} \|\mu_i^{(t)} - x_j\|^2
$$

Recenter: μ_i becomes centroid of its points: ۰

K-means algorithm

Optimize potential function: $e^{\int \frac{R}{2} ||\mu_i - \mu_j||^2} dx$

$$
\min_{\mu} \min_{C} \mathop{F(\mu, C)}_{\mathop{\mathcal{L}}\nolimits} = \min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_i - x_j||^2
$$

- **K-means algorithm:** (coordinate descent on F) О.
	- **(1)** Fix **µ**, optimize C **Expected** cluster assignment
	- **(2)** Fix C, optimize μ

Maximum likelihood for center

Similar to EM/Baum Welch algorithm for learning
HMM parameters $\int_{\text{right}}^{\text{right}}$ atternal state $\int_{\text{right}}^{\text{right}}$ duster ostgrant latent states HMM parameters

Computational Complexity

- At each iteration,
	- Computing distance between each of the n objects and the K cluster centers is O(*Kn*).
	- Computing cluster centers: Each object gets added once to some cluster: O(*n*).
- Assume these two steps are each done once for *l* iterations: O(*lKn*).

• Results are quite sensitive to seed selection.

• Results are quite sensitive to seed selection.

• Results are quite sensitive to seed selection.

- Results can vary based on random seed selection.
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clustering.
	- Try out multiple starting points (very important!!!)
	- k-means ++ algorithm of Arthur and Vassilvitskii key idea: choose centers that are far apart

(probability of picking a point as cluster center α distance from nearest center picked so far)

Other Issues

- Number of clusters K
	- Objective function
 $\sum_{j=1}^{m} ||\mu_{C(j)} x_j||^2$

 \triangleright Can you pick K by minimizing the objective over K?

– Look for "Knee" in objective function

Other Issues

• Sensitive to Outliers

• Shape of clusters

Assumes isotropic, equal variance, convex clusters

K-means limitations

- "soft" assignment Clusters may overlap
- Some clusters may be "wider" than others
- Clusters may not be linearly separable

Partitioning Algorithms

• K-means

– **hard assignment**: each object belongs to only one cluster

• Mixture modeling

– **soft assignment**: probability that an object belongs to a cluster

Generative approach

Mixture models

GMM – Gaussian Mixture Model (Multi-modal distribution)

Mixture models

GMM – Gaussian Mixture Model (Multi-modal distribution)

- There are k components
- Component *i* has an associated mean vector ^µ*ⁱ*
- Each component generates data from a Gaussian with mean ^µ*i* and covariance matrix Σ_i

Each data point is generated according to the following recipe:

1) Pick a component at random: Choose component i with probability *P(y=i)*

2) Datapoint
$$
x \sim N(\mu_i, \Sigma_i)
$$

EM for general GMMs: Example $k=3$ $\sum_{i=3}$ μ , μ ν , μ 3 $Z_{11}Z_{2}Z_{3}$ $P1, P2, P3 = \frac{1}{3}$ $\mu_{20.333}$ μ_1 $\overline{\textbf{b}}$. 333 Σ_1 $\left\{\n\begin{array}{ccc}\n & \mu_1 & \mu_2 \\
& \ddots & \mu_n\n\end{array}\n\right\}$ $P(y = \bullet | x_{j}, \mu_{1}, \mu_{2}, \mu_{3}, \Sigma_{1}, \Sigma_{2}, \Sigma_{3}, p_{1}, p_{2}, p_{3})$ data point

After 1st iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

GMM clustering of assay data

 k

Resulting Density Estimator

Resulting Bayes Classifier

Expectation-Maximization (EM)

A general algorithm to deal with hidden data

- No need to choose step size as in Gradient methods.
- EM is an Iterative algorithm with two linked steps: E-step: fill-in hidden data (Y) using inference \leq M-step: apply standard MLE/MAP method to estimate parameters ${p_i, \mu_i, \Sigma_i\}^k_{i=1}$
- This procedure monotonically improves the likelihood (or leaves it unchanged). Thus it always converges to a local optimum of the likelihood.

Clustering Algorithms

- Partition algorithms
	- K means clustering
	- Mixture-Model based clustering

• **Hierarchical algorithms**

- Single-linkage
- Average-linkage
- Complete-linkage
- Centroid-based

Hierarchical Clustering

• Bottom-Up Agglomerative Clustering

Starts with each object in a separate cluster, and repeat:

- Joins the most similar pair of clusters,
- Update the similarity of the new cluster to others until there is only one cluster.

Greedy – less accurate but simple to implement

- Top-Down divisive
- Starts with all the data in a single cluster, and repeat:
	- Split each cluster into two using a partition algorithm Until each object is a separate cluster.

More accurate but complex to implement

Bottom-up Agglomerative clustering

Different algorithms differ in how the similarities are defined (and hence updated) between two clusters

- Single-Linkage
	- Nearest Neighbor: similarity between their closest members.
- Complete-Linkage
	- Furthest Neighbor: similarity between their furthest members.
- Centroid
	- Similarity between the centers of gravity
- Average-Linkage
	- Average similarity of all cross-cluster pairs.

Single-Linkage Method

Euclidean Distance

Complete-Linkage Method

Euclidean Distance

c

b a

Dendrograms

Another Example

Complete Link Example

Single vs. Complete Linkage

Shape of clusters

Single-linkage allows anisotropic and non-convex shapes

Complete-linkage assumes isotopic, convex shapes

Computational Complexity

- All hierarchical clustering methods need to compute similarity of all pairs of *n* individual instances which is O(n2).
- At each iteration,
	- $-$ Sort similarities to find largest one O(n²log n).
	- Update similarity between merged cluster and other clusters.

Computing similarity to each other cluster can be done in constant time.

So we get $O(n^2 \log n)$ or $O(n^3)$ (if naïvely implemented)

What you need to know…

- Partition based clustering algorithms
	- K-means $\overline{}$
		- Coordinate descent
		- Seeding
		- Choosing K
	- $-$ Mixture models ν EM algorithm
- Hierarchical clustering algorithms
	- Single-linkage
	- Complete-linkage
	- Centroid-linkage
	- Average-linkage