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K-means Recap …

S:

Iterate t = 0, 1, 2, …



K-means algorithm

K-means algorithm: (coordinate descent on F)

(1)

(2)

Expected cluster assignment

Maximum likelihood for center

Similar to EM/Baum Welch algorithm for learning 
HMM parameters
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Computational Complexity

• At each iteration, 
– Computing distance between each of the n objects and the 

K cluster centers is O(Kn).
– Computing cluster centers: Each object gets added once to 

some cluster: O(n).

• Assume these two steps are each done once for l iterations: 
O(lKn).
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Seed Choice

• Results are quite sensitive to seed selection.
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Seed Choice

• Results can vary based on random seed selection.

• Some seeds can result in poor convergence rate, or 
convergence to sub-optimal clustering.
– Try out multiple starting points (very important!!!)
– k-means ++ algorithm of Arthur and Vassilvitskii

key idea: choose centers that are far apart
(probability of picking a point as cluster center       
distance from nearest center picked so far)

/



Other Issues
• Number of clusters K

– Objective function

– Look for “Knee” in objective function
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Ø Can you pick K by minimizing the objective over K? 



Other Issues

• Sensitive to Outliers 
– use K-medoids
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• Shape of clusters
Assumes isotropic, equal variance, convex clusters



K-means limitations

• Clusters may overlap
• Some clusters may be “wider” than others
• Clusters may not be linearly separable



• K-means 
– hard assignment: each object belongs to only one 

cluster

• Mixture modeling
– soft assignment: probability that an object 

belongs to a cluster

Generative approach
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Partitioning Algorithms



Mixture models

GMM – Gaussian Mixture Model  (Multi-modal distribution)

µ1

µ2

µ3

µ1

µ2

µ3

p(x|y=i) ~ N(µi, Si)

p(x) = S p(x|y=i) P(y=i)
i

Mixture
proportion

Mixture
component



Mixture models

GMM – Gaussian Mixture Model  (Multi-modal distribution)

µ1

µ2

µ3

µ1

µ2

µ3

• There are k components

• Component i has an associated 
mean vector µi

• Each component generates data 
from a Gaussian with mean µi and 
covariance matrix Si

Each data point is generated according 
to the following recipe: 
1) Pick a component at random: 

Choose component i with 
probability P(y=i)

2) Datapoint x ~ N(µi, Si)



Learning GMMs via EM algorithm

E-step
Compute “expected” classes of all datapoints for each class

M-step
Compute MLEs given our data’s class membership distributions (weights)

Just evaluate a 
Gaussian at xj

Iterate.  On iteration t let our estimates be

lt = { μ1
(t), μ2

(t) … μk
(t), S1

(t), S2
(t) … Sk

(t), p1
(t), p2

(t) … pk
(t) }        

pi
(t) is shorthand for 

estimate of P(y=i) on 
t’th iteration
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EM for general GMMs: Example

µ1

µ2

µ3S1

S2 S3

P(y =  |xj,µ1,µ2,µ3,S1,S2,S3,p1,p2,p3)



After 1st iteration



After 2nd iteration



After 3rd iteration



After 4th iteration



After 5th iteration



After 6th iteration



After 20th iteration



GMM clustering of assay data



Resulting 
Density 

Estimator



Three 
classes of 

assay
(each learned with 

it’s own mixture 
model)



Resulting 
Bayes

Classifier



Expectation-Maximization (EM)

A general algorithm to deal with hidden data

• No need to choose step size as in Gradient methods.

• EM is an Iterative algorithm with two linked steps:
E-step: fill-in hidden data (Y) using inference
M-step: apply standard MLE/MAP method to estimate parameters

{pi, μi, Σi}k
i=1

• This procedure monotonically improves the likelihood (or 
leaves it unchanged). Thus it always converges to a local 
optimum of the likelihood.

k
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Clustering Algorithms

• Partition algorithms
• K means clustering
• Mixture-Model based clustering

• Hierarchical algorithms
• Single-linkage
• Average-linkage
• Complete-linkage
• Centroid-based
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Hierarchical Clustering

• Bottom-Up Agglomerative Clustering
Starts with each object in a separate cluster, and repeat:
– Joins the most similar pair of clusters, 
– Update the similarity of the new cluster to others
until there is only one cluster.

Greedy – less accurate but simple to implement

• Top-Down divisive 
Starts with all the data in a single cluster, and repeat:
– Split each cluster into two using a partition algorithm
Until each object is a separate cluster.

More accurate but complex to implement
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Bottom-up Agglomerative clustering
Different algorithms differ in how the similarities are defined (and hence 
updated) between two clusters

• Single-Linkage 
– Nearest Neighbor: similarity between

their closest members.

• Complete-Linkage 
– Furthest Neighbor: similarity between

their furthest members.

• Centroid
– Similarity between the centers of gravity

• Average-Linkage
– Average similarity of all cross-cluster pairs.
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Dendrograms
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Another Example



Single vs. Complete Linkage
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Shape of clusters

Single-linkage allows anisotropic and 
non-convex shapes

Complete-linkage assumes isotopic, convex         
shapes
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Computational Complexity

• All hierarchical clustering methods need to compute similarity 
of all pairs of n individual instances which is O(n2).

• At each iteration, 
– Sort similarities to find largest one O(n2log n).
– Update similarity between merged cluster and other clusters.

Computing similarity to each other cluster can be done in constant 
time.

• So we get O(n2 log n) or O(n3) (if naïvely implemented)



What you need to know…
• Partition based clustering algorithms

– K-means
• Coordinate descent
• Seeding
• Choosing K

– Mixture models
EM algorithm

• Hierarchical clustering algorithms
– Single-linkage
– Complete-linkage
– Centroid-linkage
– Average-linkage
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