
Support Vector Machines
- Dual formulation

Aarti Singh

Machine Learning 10-701
Feb 6, 2023

Hard margin SVM

2

w.x + b > 0 w.x + b < 0

min w.w
w,b

s.t. (w.xj+b) yj ≥ 1 "j

Solve efficiently by quadratic
programming (QP)

Assumes data is linearly
separable

w
.x

+
b

=
0

w
.x
+

+
b

=
1

w
.x -

+
b

=
-1

g

Soft margin SVM

3

min w.w + C Σξjw,b,{ξj}

s.t. (w.xj+b) yj ≥ 1-ξj "j
ξj ≥ 0 "j

j

Allow “error” in classification

ξj - “slack” variables
= (>1 if xj misclassifed)

pay linear penalty if mistake

C - tradeoff parameter (C = ∞
recovers hard margin SVM)

Still QP J

SVM – linearly separable case

• Convex quadratic program – quadratic objective, linear
constraints

• But expensive to solve if d is very large
• Often solved in dual form (n-dim problem)

4

w – weights on features (d-dim problem)

n training points (x1, …, xn)
d features xj is a d-dimensional vector

• Primal problem:

w
.x

+
b

=
0

Detour - Constrained Optimization

5

Constraint inactive Constraint active
(tight)

x⇤ = max(b, 0)

Constrained Optimization

6

b +ve

Equivalent unconstrained optimization:
minx x2 + I(x-b)

Replace with lower bound (a >= 0)
x2 + I(x-b) >= x2 - a(x-b)

Primal and Dual Problems

7

Primal problem: p* =

Notice that

= min
x

max
↵�0

L(x,↵)

Why?

min
x

max
↵�0

L(x,↵) = x2 �min
↵�0

↵(x� b)

Dual problem: d* = =

=

Recipe for deriving Dual Problem

8

Moving the constraint to objective function
Lagrangian:

Dual problem:

b +ve

Primal problem:

Why solve the Dual?

9

Primal problem: p* = Dual problem: d* =

Ø Dual problem (maximization) is always concave even if
primal is not convex

Ø As many dual variables a as constraints, helpful if fewer
constraints than dimension of primal variable x

min
x

max
↵�0

L(x,↵) ==

Why? Pointwise infimum of concave functions is concave.
[Pointwise supremum of convex functions is convex.]

Connection between Primal and Dual

10

Primal problem: p* =

Ø Weak duality: The dual solution d* lower bounds the primal
solution p* i.e. d* ≤ p*

To see this, recall

For every feasible x’ (i.e. x’ ≥ b) and feasible α’ (i.e. α’ ≥ 0) , notice
that

d(α) = ≤ x’2 – a’(x’-b) ≤ x’2

Since above holds true for every feasible x’, we have d(α) ≤ x*2 = p*

Dual problem: d* =

Connection between Primal and Dual

11

Primal problem: p* =

Ø Weak duality: The dual solution d* lower bounds the primal
solution p* i.e. d* ≤ p*

Duality gap = p*-d*

Dual problem: d* =

Ø Strong duality: d* = p* holds often for many problems of
interest e.g. if the primal is a feasible convex objective with linear
constraints (Slater’s condition)

12

Connection between Primal and Dual
What does strong duality say about ↵⇤ (the ↵ that achieved optimal value of
dual) and x⇤ (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT con-
ditions) are true for ↵⇤ and x⇤:

• 1. 5L(x⇤,↵⇤) = 0 i.e. Gradient of Lagrangian at x⇤ and ↵⇤ is zero.

• 2. x⇤ � b i.e. x⇤ is primal feasible

• 3. ↵⇤ � 0 i.e. ↵⇤ is dual feasible

• 4. ↵⇤(x⇤ � b) = 0 (called as complementary slackness)

We use the first one to relate x⇤ and ↵⇤. We use the last one (complimentary
slackness) to argue that ↵⇤ = 0 if constraint is inactive and ↵⇤ > 0 if constraint
is active and tight.

What does strong duality say about ↵⇤ (the ↵ that achieved optimal value of
dual) and x⇤ (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT con-
ditions) are true for ↵⇤ and x⇤:

• 1. 5L(x⇤,↵⇤) = 0 i.e. Gradient of Lagrangian at x⇤ and ↵⇤ is zero.

• 2. x⇤ � b i.e. x⇤ is primal feasible

• 3. ↵⇤ � 0 i.e. ↵⇤ is dual feasible

• 4. ↵⇤(x⇤ � b) = 0 (called as complementary slackness)

We use the first one to relate x⇤ and ↵⇤. We use the last one (complimentary
slackness) to argue that ↵⇤ = 0 if constraint is inactive and ↵⇤ > 0 if constraint
is active and tight.

KKT (Karush-Kuhn-Tucker conditions)

Constrained Optimization – Dual Problem

13

a* = 0
constraint is inactive

x* > -1

a* > 0
constraint is active

x* = 1

Ø Poll:
Lagrangian
Dual variables

Dual SVM – linearly separable case

• Primal problem:

• Dual problem (derivation):

14

w – weights on features (d-dim problem)

a – weights on training pts (n-dim problem)

n training points, d features (x1, …, xn) where xi is a d-dimensional
vector

Dual SVM – linearly separable case

• Dual problem (derivation):

15

Dual SVM – linearly separable case

• Dual problem:

16

Dual SVM – linearly separable case

Dual problem is also QP
Solution gives ajs

17

What about b?

Dual SVM: Sparsity of dual solution

18

w
.x

+
b

=
0

Only few ajs can be
non-zero : where
constraint is active

(w.xj + b)yj = 1

Support vectors –
training points j whose
ajs are non-zero

aj > 0

aj > 0

aj > 0

aj = 0

aj = 0

aj = 0

Dual SVM – linearly separable case

Dual problem is also QP
Solution gives ajs

19

Use any one of support vectors with
ak>0 to compute b since constraint is
tight (w.xk + b)yk = 1

Dual SVM – non-separable case

20

• Primal problem:

• Dual problem:
Lagrange
Multipliers

,{ξj}

,{ξj} L(w, b, ⇠,↵, µ)

Dual SVM – non-separable case

21

Dual problem is also QP
Solution gives ajs

comes from Intuition:
If C→∞, recover hard-margin SVM

@L

@⇠
= 0

So why solve the dual SVM?

• There are some quadratic programming algorithms
that can solve the dual faster than the primal,
(specially in high dimensions d>>n)

• But, more importantly, the “kernel trick”!!!

22

Separable using higher-order features

23

x1

x2

r = √x12+x22

q

x1

x1

x 1
2

Dual formulation only depends on
dot-products, not on w!

24

Φ(x) – High-dimensional feature space, but never need it explicitly as long
as we can compute the dot product fast using some Kernel K

Polynomial features f(x)

25

m – input features d – degree of polynomial

grows fast!
d = 6, m = 100
about 1.6 billion terms

Dot Product of Polynomial features

26

d=1

d=2

d

