Support Vector Machines - Dual formulation

Aarti Singh

Machine Learning 10-701 Feb 6, 2023

Soft margin SVM

Allow "error" in classification

$$\min_{\mathbf{w},b,\{\xi_j\}} \mathbf{w}.\mathbf{w} + C \sum_j \xi_j$$
s.t. $(\mathbf{w}.\mathbf{x}_j+b) \ y_j \ge 1-\xi_j \quad \forall j$

$$\xi_j \ge 0 \quad \forall j$$

pay linear penalty if mistake

C - tradeoff parameter (C = ∞ recovers hard margin SVM)

Still QP 🙂

SVM – linearly separable case

n training points d features $(\mathbf{x}_1, ..., \mathbf{x}_n)$ \mathbf{x}_i is a d-dimensional vector

• <u>Primal problem</u>: minimize $\frac{1}{2}\mathbf{w}.\mathbf{w}$ $\frac{1}{2}\mathbf{w}.\mathbf{w}$ $(\mathbf{w}.\mathbf{x}_j + b) y_j \ge 1, \forall j$ \mathbf{v}_j \mathbf{v}_j

w - weights on features (d-dim problem)

- Convex quadratic program quadratic objective, linear constraints
- But expensive to solve if d is very large
- Often solved in dual form (n-dim problem)

Detour - Constrained Optimization $x \in (Wb)$ $\min_{x} x^{2}$ $s.t. x \ge b$ $x^{*} = \max(b, 0)$

x- d (x-6) $\begin{array}{ll} \min_x \ x^2 \\ \text{s.t.} \ x \ge b \end{array}$

Equivalent unconstrained optimization: $min_x x^2 + I(x-b)$

Replace with lower bound ($\alpha \ge 0$) $x^2 + I(x-b) \ge x^2 - \alpha(x-b)$ Lagrangian

Primal and Dual Problems

Notice that

Primal problem: p* = $\min_{x} x^2$ = $\min_{x} \max_{\alpha \ge 0} L(x, \alpha)$ s.t. $x \ge b$ Why? $L(x, \alpha) = x^2 - \alpha(x - b)$

$$\max_{\alpha \ge 0} L(x, \alpha) = x^2 - \min_{\alpha \ge 0} \alpha(x - b) = \begin{cases} +\infty & x < b \\ x^2 & x^2b \end{cases}$$

Dual problem: d* = $\max_{\alpha} d(\alpha) = \max_{\alpha} \min_{x} L(x, \alpha)^{-d(x)}$ s.t. $\alpha \ge 0$ s.t. $\alpha \ge 0$

Recipe for deriving Dual Problem

Primal problem:

$$\min_x x^2 \\ \text{S.t.} \ x \geq b \quad \text{g(x)} > 0 \\ \underset{x \neq b}{\xrightarrow{}} \circ \\ \text{Moving the constraint to objective function}$$

Lagrangian:

$$L(x,\alpha) = x^2 - \alpha(x-b)$$

s.t. $\alpha \ge 0$

Dual problem:

$$\max_{\alpha} d(\alpha) \xrightarrow{} \min_{x} L(x, \alpha)$$

s.t. $\alpha \ge 0$

Why solve the Dual? $M = \min(x, \alpha)$ f(x)
xf(x)
 $x = \min_x x^2$
 $x \ge b$ $Dual problem: d^* = \max_\alpha d(\alpha)$
 $x \ge 0$ $= \min_x \max_\alpha L(x, \alpha)$
 $x \ge 0$ $= \max_\alpha \min_x L(x, \alpha)$
 $x \ge 0$

Dual problem (maximization) is always concave even if primal is not convex

Why? Pointwise infimum of concave functions is concave. [Pointwise supremum of convex functions is convex.]

$$L(x,\alpha) = x^2 - \alpha(x-b) \not z \not$$

9

As many dual variables of as constraints, helpful if fewer constraints than dimension of primal variable x

Connection between Primal and Dual

Primal problem: $p^* = \min_x x^2$ Dual problem: $d^* = \max_\alpha d(\alpha)$ s.t. $x \ge b$ s.t. $\alpha \ge 0$

Weak duality: The dual solution d* lower bounds the primal solution p* i.e. d* ≤ p*

To see this, recall $L(x, \alpha) = x^2 - \alpha(x - b)$

For every feasible x' (i.e. $x' \ge b$) and feasible α' (i.e. $\alpha' \ge 0$), notice that

$$d(\alpha) = \min_x L(x, \alpha) \le x'^2 - \alpha'(x'-b) \le x'^2$$

Since above holds true for every feasible x', we have $d(\alpha) \le x^{*2} = p^*$

Connection between Primal and Dual $X = (W_1 b)$ **Primal problem:** $p^* = \min_x x^2$ **Dual problem:** $d^* = \max_{\alpha} d(\alpha)$ s.t. $x \ge b$ $g(\mathcal{W} \ge 0$ s.t. $\alpha \ge 0$ Weak duality: The dual solution d* lower bounds the primal solution p^* i.e. $d^* \leq p^*$ **Duality gap** = p*-d*

Strong duality: d* = p* holds often for many problems of interest e.g. if the primal is a feasible convex objective with linear constraints (Slater's condition)

Connection between Primal and Dual

What does strong duality say about α^* (the α that achieved optimal value of dual) and x^* (the x that achieves optimal value of primal problem)?

KKT (Karush-Kuhn-Tucker conditions)

Whenever strong duality holds, the following conditions (known as KKT conditions) are true for α^* and x^* :

- 1. $\nabla L(x^*, \alpha^*) = 0$ i.e. Gradient of Lagrangian at x^* and α^* is zero.
- 2. $x^* \ge b$ i.e. x^* is primal feasible \checkmark
- 3. $\alpha^* \ge 0$ i.e. α^* is dual feasible \checkmark
- 4. $\alpha^*(x^* b) = 0$ (called as complementary slackness) b = -1 $d^*(x^* + 1) = 0$ \Rightarrow either $d^* = 0$ $\sigma^* x^{*} = -1$

Dual SVM – linearly separable case

n training points, d features

 $(\mathbf{x}_1, ..., \mathbf{x}_n)$ where x_i is a d-dimensional vector

Primal problem:minimize
 \mathbf{w}, b $\frac{1}{2}\mathbf{w}.\mathbf{w}$
 $(\mathbf{w}.\mathbf{x}_j + b) y_j \ge 1, \forall j$ $\checkmark_j > \diamond$

w - weights on features (d-dim problem)

• <u>Dual problem</u> (derivation):

$$L(\mathbf{w}, b, \alpha) = \underbrace{\frac{1}{2}\mathbf{w} \cdot \mathbf{w}}_{j} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

$$\alpha_{j} \ge 0, \ \forall j$$

 α - weights on training pts (n-dim problem)

Dual SVM – linearly separable case L= (di. - dn) Dual problem (derivation): $d(\alpha)$ $\max_{\alpha} \min_{\mathbf{w},b} L(\mathbf{w},b,\alpha) = \frac{1}{2}\mathbf{w}\cdot\mathbf{w} - \sum_{j} \alpha_{j} \left| \left(\mathbf{w}\cdot\mathbf{x}_{j} + b\right) y_{j} - 1 \right|$ $\alpha_j \geq 0, \ \forall j$ $\frac{\partial L}{\partial u} = W - \sum_{j} \frac{\chi_j \chi_j Y_j}{j} = 0$ $\frac{\partial L}{\partial \mathbf{w}} = 0 \qquad \Rightarrow \mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$ $\frac{\partial L}{\partial b} = 0 \qquad \Rightarrow \sum_{j} \alpha_{j} y_{j} = 0$ $\frac{\partial L}{\partial b} = -\sum_{j} \alpha_{j} y_{j} = 0$

Dual SVM – linearly separable case

• Dual problem:

 $\max_{\alpha} \min_{\mathbf{w},b} L(\mathbf{w},b,\alpha) = \frac{1}{2}\mathbf{w}\cdot\mathbf{w} - \sum_{j} \alpha_{j} \left| \left(\mathbf{w}\cdot\mathbf{x}_{j} + b\right) y_{j} - 1 \right|$ $\alpha_j \geq 0, \ \forall j$ $\Rightarrow \mathbf{w} = \sum_{i} \alpha_{j} y_{j} \mathbf{x}_{j}$ $\Rightarrow \sum_{j} \alpha_{j} y_{j} = 0$ $\min_{U,b} L(W,b,d) = \frac{1}{2} \sum_{j=1}^{\infty} A_j Y_j \times_j \cdot \sum_{i=1}^{\infty} A_i Y_i \times_i - \sum_{j=1}^{\infty} J_j \left[\left(\sum_{i=1}^{\infty} A_i Y_i \times_i \cdot X_j \right) \right]$ +b) y; -1] $= \frac{1}{2} \underbrace{\overrightarrow{y}}_{j} \underbrace{x_{i}}_{j} \underbrace{y_{i}}_{j} \underbrace{x_{i}}_{j} \underbrace{x_{i}}_{j} - \underbrace{\sum}_{j} \underbrace{z_{i}}_{j} \underbrace{x_{i}}_{j} \underbrace{y_{i}}_{j} \underbrace{x_{i}}_{j} \underbrace{x_{i}}_$

Dual SVM – linearly separable case
maximize_{$$\alpha$$} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$
 $\sum_{i} \alpha_{i} y_{i} = 0$
 $\alpha_{i} \ge 0$
Solution gives $\alpha_{j} \mathbf{s}$
What about b?

Dual SVM – linearly separable case

L

maximize_{$$\alpha$$} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$
 $\sum_{i} \alpha_{i} y_{i} = 0$
 $\alpha_{i} \ge 0$

Dual problem is also QP
Solution gives
$$\alpha_j s \longrightarrow i$$

Use any one of support vectors with
 $\alpha_k > 0$ to compute b since constraint is
tight (w.x_k + b)y_k = 1 $\longrightarrow b = i$
 $w = \sum_i \alpha_i y_i x_i$
 $b = y_k - w.x_k$
for any k where $\alpha_k > i$
 $y_k - w.x_k$

Dual SVM – non-separable case

• Primal problem:

minimize_{**w**,*b*,{{s}}} $\frac{1}{2}$ **w**.**w** + $C \sum_j \xi_j$} $\begin{array}{c} \left(\mathbf{w}.\mathbf{x}_{j}+b\right) y_{j} \geq 1-\xi_{j}, \ \forall j \quad \boldsymbol{\epsilon} \\ \xi_{j} \geq 0, \ \forall j \quad \boldsymbol{\epsilon} \\ \mu_{j} \end{array}$ di 乃 Lagrange Dual problem: $d(\alpha,\mu)$ **Multipliers** $\max_{\alpha,\mu} \min_{\mathbf{w},b,\{\xi\}} L(\mathbf{w},b,\xi,\alpha,\mu)$ $s.t.\alpha_j \ge 0 \quad \forall j$ $\mu_{j} \geq 0 \quad \forall j$

Dual SVM – non-separable case

$$\begin{split} \text{maximize}_{\alpha} \quad \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j} \\ & \sum_{i} \alpha_{i} y_{i} = 0 \\ & C \ge \alpha_{i} \ge 0 \\ & \text{comes from } \frac{\partial L}{\partial \xi} = 0 \end{split} \quad \begin{aligned} & \underbrace{\text{Intuition:}}_{\text{If } C \to \infty, \text{ recover hard-margin SVM}} \end{aligned}$$

Dual problem is also QP Solution gives $\alpha_j s$

$$\mathbf{w} = \sum_i lpha_i y_i \mathbf{x}_i$$

 $b = y_k - \mathbf{w}.\mathbf{x}_k$
for any k where $C > lpha_k > 0$

So why solve the dual SVM?

- There are some quadratic programming algorithms that can solve the dual faster than the primal, (specially in high dimensions d>>n)
- But, more importantly, the "kernel trick"!!!

Separable using higher-order features

23

Dual formulation only depends on dot-products, not on w!

 $\Phi(\mathbf{x})$ – High-dimensional feature space, but never need it explicitly as long as we can compute the dot product fast using some Kernel K

Polynomial features $\phi(x)$

Dot Product of Polynomial features

 $\Phi(\mathbf{x}) =$ polynomials of degree exactly d

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$
$$\mathbf{d} = \mathbf{1} \quad \Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = x_1 z_1 + x_2 z_2 = \mathbf{x} \cdot \mathbf{z}$$
$$\mathbf{d} = \mathbf{2} \quad \Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \begin{bmatrix} x_1^2 \\ \sqrt{2} x_1 x_2 \\ x_2^2 \end{bmatrix} \cdot \begin{bmatrix} x_1^2 \\ \sqrt{2} x_1 x_2 \\ x_2^2 \end{bmatrix} = x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2$$
$$= (x_1 z_1 + x_2 z_2)^2$$
$$= (\mathbf{x} \cdot \mathbf{z})^2$$

d $\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = K(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z})^d$

26