MLE/MAP for learning distributions

Aarti Singh

Machine Learning 10-701 Jan 25, 2023

Distribution of Inputs

Input
$$X \in \mathcal{X}$$

Discrete Probability Distribution P(X) = P(X=x)

e.g.
$$P(head) = \frac{1}{2}$$
, $P(word x in text) = p_x$

Probabilities in a distribution sum to 1

$$\sum_{x} P(X=x) = 1$$

$$\sum_{x} P(X=x) = 1$$
 $P(tail) = 1 - p(head), \sum_{x} p_{x} = 1$

Continuous Probability density p(x)

Probability density integrate to 1

$$\int p(x)dx = 1$$

$$P(a \le X \le b) = \int_{a}^{b} p(x) dx$$

Distributions in Supervised tasks

Input
$$X \in \mathcal{X}$$

 Distribution learning also arises in supervised learning tasks e.g. classification

P(X = x | Y = y) Distribution of words in 'news' documents Distribution of brain activity under 'stress'

P(Y = y | X = x) Distribution of topics given document

How to learn parameters from data? MLE

(Discrete case)

Learning parameters in distributions

$$P(Y = \bullet) = \theta$$

$$P(Y = 0) = 1 - \theta$$

Learning θ is equivalent to learning probability of head in coin flip.

➤ How do you learn that?

Answer: 3/5

➤ Why??

Bernoulli distribution

- Parameter θ : P(Heads) = θ , P(Tails) = 1- θ
- Flips are i.i.d.:
 - Independent events
 - Identically distributed according to Bernoulli distribution

Choose θ that maximizes the probability of observed data aka Likelihood

Choose θ that maximizes the probability of observed data (aka likelihood)

$$\hat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta)$$

MLE of probability of head:

$$\widehat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T} = 3/5$$

"Frequency of heads"

Derivation

$$\widehat{\theta}_{MLE} = \arg\max_{\theta} P(D \mid \theta)$$

Short detour - Optimization

- Optimization objective $J(\theta)$
- Minimum value $J^* = \min_{\theta} J(\theta)$
- Minima (points at which minimum value is achieved) may not be unique

• If function is strictly convex, then minimum is unique

Convex functions

A function $J(\theta)$ is called **convex** if the line joining two points $J(\theta_1), J(\theta_2)$ on the function does not go below the function on the interval $[\theta_1, \theta_2]$

(Strictly) Convex functions have a unique minimum!

Optimizing convex (concave) functions

Derivative of a function

Derivative is zero at minimum of a convex function

Second derivative is positive at minimum of a convex function

Optimizing convex (concave) functions

- ➤ What about
 - concave functions?
 - non-convex/non-concave functions?
 - derivative = 0 may not have analytic solution?
 - functions that are not differentiable?
 - optimizing a function over a bounded domain aka constrained optimization?

Derivation

$$\widehat{\theta}_{MLE} = \arg\max_{\theta} P(D \mid \theta)$$

Categorical distribution

Data, D = rolls of a dice

- $P(1) = p_1$, $P(2) = p_2$, ..., $P(6) = p_6$ $p_1 + + p_6 = 1$
- Rolls are i.i.d.:
 - Independent events
 - Identically distributed according to Categorical(θ) distribution where

$$\theta = \{p_1, p_2, ..., p_6\}$$

<u>Choose θ that maximizes the probability of observed data</u> <u>aka "Likelihood"</u>

Choose θ that maximizes the probability of observed data

$$\widehat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta)$$

MLE of probability of rolls:

$$\hat{\theta}_{MLE} = \hat{p}_{1,MLE}, \ldots, \hat{p}_{6,MLE}$$

$$\hat{p}_{y,MLE} = \frac{\alpha_y - \text{Rolls that turn up y}}{\sum_y \alpha_y - \text{Total number of rolls}}$$

"Frequency of roll y"

How to learn parameters from data? MLE

(Continuous case)

d-dim Gaussian distribution

X is Gaussian $N(\mu, \Sigma)$

 μ is d-dim vector, Σ is dxd dim matrix

$$P(X = x | \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right),$$

How to learn parameters from data? MLE

(Continuous case)

Gaussian distribution

- Parameters: μ mean, σ^2 variance
- Data are i.i.d.:
 - Independent events
 - Identically distributed according to Gaussian distribution

Choose $\theta = (\mu, \sigma^2)$ that maximizes the probability of observed data

$$egin{array}{ll} \widehat{ heta}_{MLE} &= \arg\max_{ heta} \Pr(D \mid heta) \\ &= \arg\max_{ heta} \prod_{i=1}^n P(X_i | heta) \end{array} \quad {}^{ ext{Independent draws}}$$

Choose θ = (μ , σ ²) that maximizes the probability of observed data

$$egin{array}{ll} \widehat{ heta}_{MLE} &= \arg\max_{ heta} \; P(D \mid heta) \\ &= \arg\max_{ heta} \prod_{i=1}^n P(X_i | heta) \quad & \text{Independent draws} \\ &= \arg\max_{ heta} \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(X_i - \mu)^2/2\sigma^2} \quad & \text{Identically distributed} \end{array}$$

Choose $\theta = (\mu, \sigma^2)$ that maximizes the probability of observed data

$$\begin{split} \widehat{\theta}_{MLE} &= \arg\max_{\theta} \ P(D \mid \theta) \\ &= \arg\max_{\theta} \prod_{i=1}^n P(X_i | \theta) \quad \text{Independent draws} \\ &= \arg\max_{\theta} \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(X_i - \mu)^2/2\sigma^2} \quad \text{Identically distributed} \\ &= \arg\max_{\theta = (\mu, \sigma^2)} \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\sum_{i=1}^n (X_i - \mu)^2/2\sigma^2} \end{split}$$

MLE for Gaussian mean

> Poll

$$P(D|\theta) = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\sum_{i=1}^{n} (X_i - \mu)^2 / 2\sigma^2}$$

A.
$$\max_{\mu} \sum_{i=1}^{n} (X_i - \mu)^2$$

c.
$$\max_{\mu} \mu^2 - 2\mu \sum_{i=1}^{n} X_i$$

B.
$$\min_{\mu} \sum_{i=1}^{n} (X_i - \mu)^2$$

D.
$$\max_{\mu} n\mu^2 - 2\mu \sum_{i=1}^{n} X_i$$

MLE for Gaussian mean and variance

$$\widehat{\mu}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\widehat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \widehat{\mu})^2$$

Self exercise:

Derive MLE of variance?

Is the MLE of mean unbiased?
Is the MLE of variance unbiased?
How can you make it unbiased?

MLE for uniform or exponential distribution?

d-dimensional versions?

Max A Posteriori (MAP) estimation

Can we bring in prior knowledge if data is not enough?

• Assume a prior (before seeing data D) distribution $P(\theta)$ for parameters θ

• Choose value that maximizes a posterior distribution $P(\theta|D)$ of parameters θ

$$\widehat{\theta}_{MAP} = \arg \max_{\theta} P(\theta \mid D)$$

$$= \arg \max_{\theta} P(D \mid \theta)P(\theta)$$

How to choose prior distribution?

- P(θ)
 - Prior knowledge about domain e.g. unbiased coin $P(\theta) = 1/2$
 - A mathematically convenient form e.g. "conjugate" prior If $P(\theta)$ is conjugate prior for $P(D|\theta)$, then Posterior has same form as prior

```
Posterior \propto Likelihood x Prior P(\theta|D) \propto P(D|\theta) \times P(\theta)
```

e.g.	Beta	Bernoulli	Beta	θ = bias
	Dirichlet	Categorical	Dirichlet	θ = bias vector
	Gaussian	Gaussian	Gaussian	θ = mean μ
				$(known\ \Sigma)$
	inv-Wishart	Gaussian	inv-Wishart	θ = cov matrix Σ
				(known μ) ²⁶

MAP estimation for Bernoulli r.v.

Choose θ that maximizes a posterior probability

$$\widehat{\theta}_{MAP} = \arg \max_{\theta} P(\theta \mid D)$$

$$= \arg \max_{\theta} P(D \mid \theta)P(\theta)$$

MAP estimate of probability of head (using Beta conjugate prior):

$$P(\theta) \sim Beta(\beta_H, \beta_T)$$

Beta distribution

 $Beta(\beta_H, \beta_T)$

More concentrated as values of β_H , β_T increase

MAP estimation for Bernoulli r.v.

Choose θ that maximizes a posterior probability

$$\widehat{\theta}_{MAP} = \arg \max_{\theta} P(\theta \mid D)$$

$$= \arg \max_{\theta} P(D \mid \theta)P(\theta)$$

MAP estimate of probability of head (using Beta conjugate prior):

$$P(\theta) \sim Beta(\beta_H, \beta_T)$$
 Count of H/T simply get added to parameters $P(\theta|D) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$

Beta conjugate prior

 $P(\theta) \sim Beta(\beta_H, \beta_T)$ $P(\theta|D) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$

After observing 1 Tail

After observing 18 Heads and 28 Tails

As $n = \alpha_H + \alpha_T$ increases, posterior distribution becomes more concentrated

MAP estimation for Bernoulli r.v.

Choose θ that maximizes a posterior probability

$$\widehat{\theta}_{MAP} = \arg \max_{\theta} P(\theta \mid D)$$

$$= \arg \max_{\theta} P(D \mid \theta)P(\theta)$$

MAP estimate of probability of head:

$$P(\theta) \sim Beta(eta_H,eta_T)$$
 Count of H/T simply get added to parameters $P(\theta|D) \sim Beta(eta_H + lpha_H,eta_T + lpha_T)$ $\widehat{ heta}_{MAP} = rac{lpha_H + eta_H + lpha_T + eta_T - 1}{lpha_H + eta_H + lpha_T + eta_T - 2}$ Mode of Beta distribution

Equivalent to adding extra coin flips (β_H - 1 heads, β_T - 1 tails)

As we get more data, effect of prior is "washed out"

MAP estimation for Gaussian r.v.

Parameters $\theta = (\mu, \sigma^2)$

• Mean μ (known σ^2): Gaussian prior $P(\mu) = N(\eta, \lambda^2)$

$$P(\mu \mid \eta, \lambda) = \frac{1}{\lambda \sqrt{2\pi}} e^{\frac{-(\mu - \eta)^2}{2\lambda^2}}$$

$$\hat{\mu}_{MAP} = \frac{\frac{1}{\sigma^2} \sum_{i=1}^n x_i + \frac{\eta}{\lambda^2}}{\frac{n}{\sigma^2} + \frac{1}{\lambda^2}} \quad \hat{\mu}_{MLE} = \frac{1}{n} \sum_{i=1}^n x_i$$

As we get more data, effect of prior is "washed out"

• Variance σ^2 (known μ): inv-Wishart Distribution

MLE vs. MAP

Maximum Likelihood estimation (MLE)

Choose value that maximizes the probability of observed data

$$\widehat{\theta}_{MLE} = \arg \max_{\theta} P(D|\theta)$$

Maximum a posteriori (MAP) estimation

Choose value that is most probable given observed data and prior belief

$$\widehat{\theta}_{MAP} = \arg \max_{\theta} P(\theta|D)$$

$$= \arg \max_{\theta} P(D|\theta)P(\theta)$$