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Distribution of Inputs

Input X ¢ X

Discrete Probability Distribution P(X) = P(X=x) |
e.g. P(head) =%, P(word x in text) =

Probabilities in a distribution sum to 1
> P(X=x)=1 P(tail) =1 —p(head), >, p, =

Continuous Probability density p(x)  P(a<=X<=b) =ff p(x)dx
e.g. p(brain activity)

Probability density integrate to 1
[p(x)dx =1




Distributions in Supervised tasks

Input X ¢ X

* Distribution learning also arises in supervised learning tasks
e.g. classification
P(Y=y) Distribution of class labels
P(X =x |Y =vy) Distribution of words in ‘news’ documents
Distribution of brain activity under ‘stress’

The 16th- and 17th-century English and German
press output compared

Olaf simons’10

P(Y =y|X =x) Distribution of topics given document ;



How to learn parameters from data?
MILE

(Discrete case)



Learning parameters in distributions
P(Y =@)=06 P(Y =@)=1-6

Learning O is equivalent to learning probability of head in coin flip.

» How do you learn that?

Answer: 3/5

» Why??



Bernoulli distribution

 Parameter 0 : P(Heads) =0, P(Tails) = 1-6

* Flips arei.i.d.:
— Independent events
— ldentically distributed according to Bernoulli distribution

Choose O that maximizes the probability of observed data
aka Likelihood




Maximum Likelihood Estimation (MLE)

Choose 0 that maximizes the probability of observed data (aka
likelihood)

Ot = argm@ax P(D | 0)

MLE of probability of head:

apy
apg + ar

OviLE = =3/5

"Frequency of heads”



Derivation

Ot = argm@ax P(D | 0)



Short detour - Optimization

Optimization objective J(0)
Minimum value J* = ming J(0)

Minima (points at which minimum value is achieved) may

not be unique

If function is strictly convex, then minimum is unique
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Convex functions

J(6) A function J(0) is called convex if

the line joining two points
J(04),J(0,) on the function does
not go below the function on the
interval [0, 0,]

(Strictly) Convex functions
have a unique minimum!

9, 9 6
Both Concave Neither ~ Convex but not
& Convex strictly convex”




Optimizing convex (concave) functions

e Derivative of a function

 Derivative is zero at minimum of a convex function

e Second derivative is positive at minimum of a convex
function
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Optimizing convex (concave) functions

» What about
concave functions?
non-convex/non-concave functions?
derivative = 0 may not have analytic solution?
functions that are not differentiable?

optimizing a function over a bounded domain aka
constrained optimization?
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Derivation

Ot = argm@ax P(D | 0)
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Categorical distribution

Data, D = rolls of a dice -~ s

* P(l) = pll P(Z) = p2) seey P(6) = p6 p1+""+p6 =1
 Rolls arei.i.d.:
— Independent events

— ldentically distributed according to Categorical(0) distribution
where

e — {pla p2a ser ) p6}

Choose O that maximizes the probability of observed data
aka “Likelihood”
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Maximum Likelihood Estimation (MLE)

Choose 0 that maximizes the probability of observed data

Ot = argm@ax P(D | 0)

MLE of probability of rolls:
Orvire = P1LMLE,--->D6,MLE

Oy Rolls that turn up y

Py MLE —
Zy O‘y *— Total number of rolls

"Frequency of roll y* 15



How to learn parameters from data?
MILE

(Continuous case)
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d-dim Gaussian distribution

X is Gaussian N(, 2) W is d-dim vector, % is dxd dim matrix
P(X = x|p,X) = L exp (—l(x — )2 (x - u))
| Vv (2m)4[x] 2 |
X, X
3 =0 2
d=2 “* |
X = [Xy; X5




How to learn parameters from data?
MILE

(Continuous case)
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Gaussian distribution

/\

Data, D = O0—O0—10 Q00O OLO0—0——0
X

* Parameters: p—mean, 6% - variance

 Dataarei.i.d.:
— Independent events

— ldentically distributed according to Gaussian distribution
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Maximum Likelihood Estimation (MLE)

Choose 0= (1,062%) that maximizes the probability of observed data
Oyrp = arg max P(D:|8)

n
= arg moax H P(Xz. |9) Independent draws

1=1
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Maximum Likelihood Estimation (MLE)

Choose 0= (1,62%) that maximizes the probability of observed data
Oyrp = arg Max Py (6)

n
= arg mgxx H p(Xz. |9) Independent draws
§=1

Identically

X,;—n)?/20%
= w)"/20 distributed

= argmaxH\/i

202
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Maximum Likelihood Estimation (MLE)

Choose 0= (1,062%) that maximizes the probability of observed data
Ovrp = arg Max P(D|8)

n
= arg mgx H P(Xi |9) Independent draws

— |
T denticall
1 (X —p)? /202 | Y
= arg ma.xH e~ (Ximm)/20 distributed
i 2m o2

L o~ r(Xi—m)?/20
= arg max e =i
5 g () (‘2m2)n/2 |

7 (6)




MLE for Gaussian mean

> Poll 1 S (X —1)2 /202
PO10)= Gy T
mn mn
A max Y (X; — p)’ Comaxp® =2y X,
i=1 1=1
mn
. o 2 n
B. mumizzl(Xz N) D. ml?xn,uz—Z,uZXi

1=1
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MVLE for Gaussian mean and variance

1 mn
AVLE = — Y X
Ni—=1
. 1 & N2
OMLE — 52(%‘—#)
i=1

Self exercise:
Derive MLE of variance?

Is the MLE of mean unbiased? MLE for uniform or
Is the MLE of variance unbiased? exponential
How can you make it unbiased? distribution?

d-dimensional versions?
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Max A Posteriori (MAP) estimation

Can we bring in prior knowledge if data is not enough?

 Assume a prior (before seeing data D) distribution P(0) for

parameters 0

Before data

P(6)

50-50

/\ =

0

After data

P(6|D)

Orrap O

* Choose value that maximizes a posterior distribution P(0|D) of

parameters® -

Orrap

arg m@ax P(0| D)

arg m@ax P(D|0)P(0)
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How to choose prior distribution?

* P(9)

— Prior knowledge about domain e.g. unbiased coin P(0) = 1/2

— A mathematically convenient form e.g. “conjugate” prior

If P(O) is conjugate prior for P(D|0), then Posterior has
same form as prior

e.g.

Posterior o< Likelihood x Prior
P(O|D)x P(D|O) x P(0)

Beta Bernoulli Beta 0 = bias
Dirichlet  Categorical Dirichlet O = bias vector

Gaussian  Gaussian Gaussian 0 =mean

(known X)
inv-Wishart Gaussian inv-Wishart 0 = cov matrix =

(known ) *



MAP estimation for Bernoulli r.v.

Choose 0 that maximizes a posterior probability
Orvjap = arg m@ax P(O| D)
= arg m@ax P(D|60)P(0)
MAP estimate of probability of head (using Beta conjugate prior):
P(9) ~ Beta(By, Br)
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Beta distribution

Beta(Bx, Br)
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MAP estimation for Bernoulli r.v.

Choose 0 that maximizes a posterior probability
Orvjap = arg m@ax P(O| D)
= arg m@ax P(D|60)P(0)

MAP estimate of probability of head (using Beta conjugate prior):

P(0) ~ Beta(By, Br) Count of H/T simply get
added to parameters

P(0|D) ~ Beta(B + o, Br + ar)
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Beta conjugate prior

Beta pdf

P(0) ~ Beta(By, Br) P(0|D) ~ Beta(By + oy, Br + ar)
Beta(2,2) Beta(2,3) Beta(20,30)
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MAP estimation for Bernoulli r.v.

Choose 0 that maximizes a posterior probability
Orvjap = arg m@ax P(O| D)
= arg m@ax P(D|60)P(0)

MAP estimate of probability of head:

P(0) ~ Beta(By, Br) Count of H/T simply get
added to parameters

P(0|D) ~ Beta(B + o, Br + ar)

apg+ By —1 Mode of Beta

Equivalent to adding extra coin flips (B, - 1 heads, B - 1 tails)

As we get more data, effect of prior is “washed out”
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MAP estimation for Gaussian r.v.

Parameters 0 = (p,0?)
* Mean p (known o?):  Gaussian prior P(p)= N(n,\2)

P A) 1 —(u—2?7)2
: — e 2
pln W
1l —n n n
HapAap = 2 %n 1 A MMLE — " Z Ly
52 T 32 1=1

As we get more data, effect of prior is “washed out”

e Variance o? (known p): inv-Wishart Distribution
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MLE vs. MAP

e Maximum Likelihood estimation (MLE)

Choose value that maximizes the probability of observed data

Orirp = arg m@ax P(D|0)

e Maximum a posteriori (MAP) estimation

Choose value that is most probable given observed data and
prior belief

Orfap = arg meax P(0|D)
= arg m@ax P(DI|0)P(0)

When is MAP same as MLE?
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